
SimFleet Documentation
Release 1.0.1

Javi Palanca

Nov 07, 2019

Contents

1 SimFleet 3
1.1 Features . 3
1.2 Credits . 3

2 Installation 5
2.1 Stable release . 5
2.2 From sources . 5

3 Quickstart 7
3.1 Usage . 7
3.2 SimFleet entities summary . 7
3.3 Command-line interface . 8
3.4 The Config file: Loading Scenarios . 10
3.5 Graphical User Interface . 14

4 Developing New Strategies 17
4.1 Introduction . 18
4.2 Agent Foundations . 24
4.3 How to Implement your own Strategies . 27
4.4 How to Implement New Strategies – Recommendations . 35

5 API Documentation 39
5.1 simfleet package . 39

6 Contributing 63
6.1 Types of Contributions . 63
6.2 Get Started! . 64
6.3 Pull Request Guidelines . 65
6.4 Tips . 65

7 Credits 67
7.1 Development Lead . 67
7.2 Contributors . 67

8 History 69
8.1 1.0.1 (2019-11-07) . 69
8.2 1.0.0 (2019-11-05) . 69

i

8.3 0.4.1 (2019-01-07) . 70
8.4 0.4.0 (2018-10-25) . 70
8.5 0.3.0 (2018-10-01) . 70
8.6 0.2 (2017-11-15) . 70
8.7 0.1.3 (2017-11-15) . 70
8.8 0.1.1 (2017-11-14) . 70
8.9 0.1.0 (2017-11-03) . 71

9 Indices and tables 73

Bibliography 75

Python Module Index 77

Index 79

ii

SimFleet Documentation, Release 1.0.1

Contents:

Contents 1

SimFleet Documentation, Release 1.0.1

2 Contents

CHAPTER 1

SimFleet

Agent-based fleet simulator to test strategies

• Free software: MIT license

• Documentation: https://simfleet.readthedocs.io.

1.1 Features

• Open Fleets simulator

• Strategy pattern

• Continuous simulator

• Load scenarios

• Multi-agent system built with SPADE

• XMPP communications

1.2 Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

3

https://pypi.python.org/pypi/simfleet
https://travis-ci.org/javipalanca/simfleet
https://simfleet.readthedocs.io/en/latest/?badge=latest
https://simfleet.readthedocs.io
https://github.com/javipalanca/spade
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

SimFleet Documentation, Release 1.0.1

4 Chapter 1. SimFleet

CHAPTER 2

Installation

2.1 Stable release

To install SimFleet, run this command in your terminal:

$ pip install simfleet

This is the preferred method to install SimFleet, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for SimFleet can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/javipalanca/simfleet

Or download the tarball:

$ curl -OL https://github.com/javipalanca/simfleet/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

5

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/javipalanca/simfleet
https://github.com/javipalanca/simfleet/tarball/master

SimFleet Documentation, Release 1.0.1

6 Chapter 2. Installation

CHAPTER 3

Quickstart

Table of Contents

• Quickstart

– Usage

– SimFleet entities summary

* Description of the Customer Agents

* Description of the Transport Agent

* Description of the FleetManager Agent

– Command-line interface

– The Config file: Loading Scenarios

– Graphical User Interface

3.1 Usage

Using SimFleet is as easy as running the application in a command line. There are two use modes: a command-line
interface and a graphical web-based view. You can run simulations using only the command line or using the easier
and intuitive graphical user interface. Running SimFleet without your own developed strategies is posible since the
application comes with a set of default strategies. Let’s explore how to use both user interfaces.

3.2 SimFleet entities summary

In SimFleet there are three types of agent that interact among them during simulations. These are the Fleet Manager
agent, the Transport agent, and the Customer agent.

7

SimFleet Documentation, Release 1.0.1

3.2.1 Description of the Customer Agents

The Customer agents represent people that need to go from one location of the city (their “current location”) to another
(their “destination”) or packages that need to be moved from an origin to a destination. For doing so, each Customer
agent requests a single transport service and, once it is transported to its destination, it reaches its final state and ends
its execution.

3.2.2 Description of the Transport Agent

The Transport agents represent vehicles which can transport Customer agents from their current positions to their
respective destinations.

3.2.3 Description of the FleetManager Agent

The FleetManager Agent is responsible for putting in contact the Customer agents that need a transport service, and
the Transport agents that may be available to offer these services. In short, the FleetManager Agent acts like a transport
call center, accepting the incoming requests from customers (Customer agents) and forwarding these requests to the
(appropriate) Transport agents. In order to do so, the FleetManager has a registration protocol by which Transport
agents subscribe to the Fleet Manager that represents their fleet. This is automatically done when a Transport agent is
started.

In the context of SimFleet, a “transport service” involves, once a particular Customer and Transport agents have
reached an agreement, the movement of the Transport agent from its current position to the Customer’s position in
order to pick the Customer up, and then the transportation of the Customer agent to its destination.

3.3 Command-line interface

After installing SimFleet open a command-line and type simfleet --config config_file.json. This
starts a simulator with the configuration specified at the JSON file and runs the simulator agent. The console will
output the default logging information and you can terminate the simulator by pressing Ctrl+C. When you terminate
the simulator the results of the simulations are printed.

Hint: To install an XMPP server visit https://xmpp.org/software/servers.html (we recommend Prosody IM)

$ simfleet --config myconfig.json
2015-10-21 16:29:07.049 | INFO | simfleet.config:load_config:75 - Reading config
→˓myconfig.json
2015-10-21 16:29:07.062 | INFO | simfleet.simulator:__init__:71 - Starting
→˓SimFleet (SimFleet)
2015-10-21 16:29:07.064 | INFO | simfleet.simulator:load_icons:172 - Reading icons
2015-10-21 16:29:07.158 | INFO | simfleet.directory:setup:40 - Directory agent
→˓running
2015-10-21 16:29:07.159 | INFO | simfleet.simulator:__init__:91 - Creating 0
→˓managers, 0 transports, 0 customers and 0 stations.
2015-10-21 16:29:07.159 | INFO | simfleet.simulator:load_scenario:116 - Loading
→˓scenario...
2015-10-21 16:29:07.162 | INFO | simfleet.route:setup:28 - Route agent running
2015-10-21 16:29:07.162 | WARNING | simfleet.route:load_cache:74 - Could not load
→˓cache file.
2015-10-21 16:29:07.226 | INFO | simfleet.simulator:setup:97 - Simulator agent
→˓running

(continues on next page)

8 Chapter 3. Quickstart

https://xmpp.org/software/servers.html
https://prosody.im

SimFleet Documentation, Release 1.0.1

(continued from previous page)

2015-10-21 16:29:07.229 | INFO | simfleet.simulator:setup:110 - Web interface
→˓running at http://127.0.0.1:9000/app

^C

2015-10-21 16:29:21.292 | INFO | simfleet.simulator:stop:258 -
Terminating... (0.0 seconds elapsed)
Simulation Results
+===================+====================+==================+===================+============+=======================+
| Simulation Name | Avg Waiting Time | Avg Total Time | Simulation Time |
→˓Max Time | Simulation Finished |
+===================+====================+==================+===================+============+=======================
| SimFleet | 0 | 0 | 0 |
→˓ 1000 | False |
+===================+====================+==================+===================+============+=======================+
Fleet Manager stats
+==============+=======================+========+
| fleet_name | transports_in_fleet | type |
+==============+=======================+========
+==============+=======================+========+
Customer stats
+========+================+==============+==========+
| name | waiting_time | total_time | status |
+========+================+==============+==========
+========+================+==============+==========+
Transport stats
+========+===============+============+==========+
| name | assignments | distance | status |
+========+===============+============+==========
+========+===============+============+==========+
Station stats
+========+==========+====================+=========+
| name | status | available_places | power |
+========+==========+====================+=========
+========+==========+====================+=========+
2015-10-21 16:29:21.360 | INFO | simfleet.simulator:stop:258 -
Terminating... (0.0 seconds elapsed)
Simulation Results
+===================+====================+==================+===================+============+=======================+
| Simulation Name | Avg Waiting Time | Avg Total Time | Simulation Time |
→˓Max Time | Simulation Finished |
+===================+====================+==================+===================+============+=======================
| SimFleet | 0 | 0 | 0 |
→˓ 1000 | False |
+===================+====================+==================+===================+============+=======================+
Manager stats
+==============+=======================+========+
| fleet_name | transports_in_fleet | type |
+==============+=======================+========
+==============+=======================+========+
Customer stats
+========+================+==============+==========+
| name | waiting_time | total_time | status |
+========+================+==============+==========
+========+================+==============+==========+
Transport stats
+========+===============+============+==========+

(continues on next page)

3.3. Command-line interface 9

SimFleet Documentation, Release 1.0.1

(continued from previous page)

| name | assignments | distance | status |
+========+===============+============+==========
+========+===============+============+==========+
Station stats
+========+==========+====================+=========+
| name | status | available_places | power |
+========+==========+====================+=========
+========+==========+====================+=========+

However, if you don’t use some options when running the simulator there will be no default transports nor customers.
That’s why stats are empty. To run a simulation with some parameters you must fill a configuration file where the
simulation scenario is defined.

To show he command line interface options you can enter the --help command:

$ simfleet --help

Usage: simfleet [OPTIONS]

Console script for SimFleet.

Options:
-n, --name TEXT Name of the simulation execution.
-o, --output TEXT Filename to save simulation results.
-of, --oformat [json|excel] Output format used to save simulation results.

(default: json)
-mt, --max-time INTEGER Maximum simulation time (in seconds).
-r, --autorun Run simulation as soon as the agents are ready.
-c, --config TEXT Filename of JSON file with initial config.
-v, --verbose Show verbose debug level: -v level 1, -vv level

2, -vvv level 3, -vvvv level 4
--help Show this message and exit.

The output of a simulation shows some statistics of the simulation, with the Average Total Time, which represents the
average time of customers from the moment they request a transport until they are delivered to their destination, and
the Average Waiting Time, which is the average time of customers from requesting a transport to being picked up. This
information is also shown for each customer along with their status at the end of the simulation.

In the case of transports, the shown information includes the number of assignments of each transport (how many
customers it has delivered), the total distance it has traveled and its final status.

This information is going to be useful for the development of new strategies that improve the system balancing or for
debugging errors if a transport or a customer gets stuck or any other unexpected situation occurs.

The last but no less important option is the verbosity option. It allows you to specify how verbose you want the
simulator to be. The number of v letters you pass to the option indicates the level of verbosity (e.g. -v is DEBUG
verbosity and -vvvv is the highest level of verbosity where the internal messages of the platform are shown).

3.4 The Config file: Loading Scenarios

The ability to load scenarios to SimFleet allows us to repeat the same experiment as many times as we want with the
same initial conditions. SimFleet supports to load a config file that defines all the fields that you need to load the same
information repeatedly. A scenario file must be coded in JSON format.

The most important fields that the scenario file must include are a customers list and a transports list. Each customer
must include the following fields:

10 Chapter 3. Quickstart

SimFleet Documentation, Release 1.0.1

Customers
Field Description
position Initial coordinates of the customer
destination Destination coordinates of the customer
name Name of the customer
password Password for registering the customer in the platform (optional)
fleet_type Fleet type that the customer wants to use
icon Custom icon (in base64 format) to be used by the customer (optional)
strategy Custom strategy file in the format module.file.Class (optional)

For transports the fields are as follows:

Transports
Field Description
position Initial coordinates of the transport
name Name of the transport
password Password for registering the transport in the platform (optional)
speed Speed of the transport (in meters per second) (optional)
fleet_type Fleet type that the customer wants to use
fleet The fleet manager’s JID to be subscribed to (optional)
autonomy The maximum autonomy of the transport (in km) (optional)
current_autonomy The initial autonomy of the transport (in km) (optional)
icon Custom icon (in base64 format) to be used by the transport (optional)
strategy Custom strategy file in the format module.file.Class (optional)

For fleet managers the fields are as follows:

Fleet managers
Field Description
position Initial coordinates of the manager
name Name of the manager
password Password for registering the manager in the platform (optional)
fleet_type Fleet type that the agent manages
icon Custom icon (in base64 format) to be used by the manager (optional)
strategy Custom strategy file in the format module.file.Class (optional)

An example of a config file with two customers, two transports and one fleet manager:

{
"fleets": [

{
"password": "secret",
"name": "fleetm1",
"fleet_type": "drone"

},
{

"password": "secret",
"name": "fleetm3",
"fleet_type": "food_delivery"

},
{

"password": "secret",

(continues on next page)

3.4. The Config file: Loading Scenarios 11

SimFleet Documentation, Release 1.0.1

(continued from previous page)

"name": "fleetm2",
"fleet_type": "drone"

}
],
"transports": [

{
"speed": 2000,
"fleet": "fleetm1@localhost",
"fleet_type": "drone",
"position": [40.41192762537371, -3.7105464935302734],
"password": "secret",
"name": "drone1"

},
{

"speed": 2000,
"fleet": "fleetm1@localhost",
"fleet_type": "drone",
"position": [40.428655600133546,-3.6993885040283203],
"password": "secret",
"name": "drone2"

},
{

"speed": 2000,
"fleet": "fleetm2@localhost",
"fleet_type": "drone",
"position": [40.446424515534666, -3.6612796783447266],
"password": "secret",
"name": "drone3"

},
{

"speed": 2000,
"fleet": "fleetm3@localhost",
"fleet_type": "food_delivery",
"position": [40.44635919724081,-3.69140625],
"password": "secret",
"name": "bike1"

},
{

"speed": 2000,
"fleet": "fleetm3@localhost",
"fleet_type": "food_delivery",
"position": [40.42035747630869,-3.665142059326172],
"password": "secret",
"name": "bike2"

}
],
"customers": [

{
"destination": [40.446163241978304,-3.7075424194335938],
"position": [40.45171508652634,-3.677501678466797],
"password": "secret",
"name": "c1",
"fleet_type": "drone"

},
{

"destination": [40.4068299938421,-3.670291900634765],
"position": [40.43087697137461,-3.716297149658203],

(continues on next page)

12 Chapter 3. Quickstart

SimFleet Documentation, Release 1.0.1

(continued from previous page)

"password": "secret",
"name": "c2",
"fleet_type": "drone"

},
{

"destination": [40.43002763221108,-3.6797332763671875],
"position": [40.45759301026131,-3.664026260375976],
"password": "secret",
"name": "c3",
"fleet_type": "drone"

},
{

"destination": [40.45785423938172,-3.711318969726563],
"position": [40.440088345478614,-3.680849075317383],
"password": "secret",
"name": "f1",
"fleet_type": "food_delivery"

},
{

"destination": [40.458572614225545,-3.680419921875],
"position": [40.409770982232956,-3.6928653717041016],
"password": "secret",
"name": "f2",
"fleet_type": "food_delivery"

}
],
"stations": [

{
"name": "station1",
"password": "secret",
"position": [40.424559,-3.7002277],
"places": 2,
"power": 50,
"icon": "gas_station"

}
],
"simulation_name": "Example Config",
"max_time": 1000,
"verbose": 1,
"transport_strategy": "simfleet.strategies.AcceptAlwaysStrategyBehaviour",
"customer_strategy": "simfleet.strategies.AcceptFirstRequestBehaviour",
"fleetmanager_strategy": "simfleet.strategies.DelegateRequestBehaviour",
"directory_strategy": "simfleet.directory.DirectoryStrategyBehaviour",
"station_strategy": "simfleet.station.StationStrategyBehaviour",
"fleetmanager_name": "fleetmanager",
"fleetmanager_password": "fleetmanager_passwd",
"route_name": "route",
"route_password": "route_passwd",
"directory_name": "directory",
"directory_password": "directory_passwd",
"host": "localhost",
"xmpp_port": 5222,
"http_port": 9000,
"http_ip": "127.0.0.1",
"coords": [40.4167754, -3.7037902],
"zoom": 14

}

3.4. The Config file: Loading Scenarios 13

SimFleet Documentation, Release 1.0.1

The rest of configuration parameters are referred to general settings of the simulator such as coords and zoom which
allows the user to set up the coordinates and zoom of the city where the simulation is run.

If you want to store the results of simulation in a file you may use the --output option (or -o) to specify the name
of the file where the simulation results will be saved. The --oformat (-of) allows you to choose the output format
between json (default) or excel. It is also useful to use the --name (or -n) to name the simulation.

Example:

$ simfleet --config myconfig.json --name "My Simulation" --output results.xls --
→˓oformat excel

3.5 Graphical User Interface

A much more user-friendly way to use SimFleet is through the built-in graphical user interface. This interface is
accessed via any web browser and is designed as a viewer for your running simulations. To open it just visit the
address shown on the screen when you run the simulator and access that website.

Hint: The Simulator agent is who raises the GUI and shows the address in the console output:

2015-10-21 16:29:07.229 | INFO | simfleet.simulator:setup:110 - Web interface
→˓running at http://127.0.0.1:9000/app

This address is (in most cases): http://127.0.0.1:9000/app

Once you visit the GUI address you see an interface like this:

In the GUI you can see a map of the city on the right and a Control Panel with various options on the left:

1. A Run button that starts the simulation.

2. A Clear button to stop and reset the simulation.

3. Stats of the waiting time and total time of the simulation in real time.

4. A Download button to get the stats of the simulation in excel or json format.

5. A collapsable tree view with the transports and customers that are included in the simulation, with a color bullet
that indicates their current status.

If the Run button is pressed the simulation shows how the transports move to the customers and deliver them to their
destinations.

Notice that when a transport picks up a customer, the customer’s icon disappears from the map view (since it is inside
the transport) and is no longer viewed (it’s also not shown when it arrives to its destination). However, you can check
at any time your customers status in the tree view of the Control Panel.

The code colors in the tree view indicate the status of a transport or a customer. The legend of colors is as follows:

14 Chapter 3. Quickstart

http://127.0.0.1:9000/app

SimFleet Documentation, Release 1.0.1

Fig. 1: GUI at startup

Fig. 2: Simulation in progress

3.5. Graphical User Interface 15

SimFleet Documentation, Release 1.0.1

Transports Customers
Bullet Status Bullet Status

WAITING WAITING

WAITING FOR APPROVAL ASSIGNED

MOVING TO CUSTOMER IN TRANSPORT

MOVING TO DESTINATION IN DESTINATION

Hint: Every time than a bullet is pulsing means that the agent is moving.

When a transport is moving it’s also shown in the GUI the path that the transport is following. The color of the path
indicates the type of movement that the transport is doing. A yellow path indicates that the transport is going to pick
up the customer. On the other hand, a blue path indicates that the transport is taking the customer to his destination.

Note: A simulation is finished when all transports are free (and waiting for new customers) and all customers are in
their destinations (i.e. all bullets are green).

16 Chapter 3. Quickstart

CHAPTER 4

Developing New Strategies

Table of Contents

• Developing New Strategies

– Introduction

* Fleet Manager Strategy Behaviour (DelegateRequestBehaviour)

* Transport Agents Behaviours

· Strategy Behaviour (AcceptAlwaysStrategyBehaviour)

· Moving Behaviour

* Customer Agents Behaviours

· Strategy Behaviour

· Travel Behaviour

* The Negotiation Process between Transport and Customer Agents

– Agent Foundations

* SPADE

· Agent Model: Behaviours

· Communication API, Messages and Templates

– How to Implement your own Strategies

* The Strategy Pattern

* The Strategy Behaviour

· Helpers

* Developing the FleetManager Agent Strategy

17

SimFleet Documentation, Release 1.0.1

· Code

· Helpers

* Developing the Transport Agent Strategy

· Code

· Helpers

* Developing the Customer Agent Strategy

· Code

· Helpers

* Other Helpers

– How to Implement New Strategies – Recommendations

4.1 Introduction

One of the main features of “SimFleet” is the ability to change the default negotiation strategy of the agents that interact
during the simulation: the Fleet Manager agents, the Transport agents and the Customer agents. The overall goal of
the negotiation strategy of these three agent types is to decide which Transport agent will transport each Customer
agent to its destination, making sure that no Customer agent is left unattended. Additionally, the negotiation strategy
may also try to optimize some metrics, such as the average time that Customer agents are waiting to be served, or that
the amount of gas spent by Transport in their movements.

The negotiation strategy is based on two main elements. First, it is based on the internal logic of each agent type
(FleetManager, Transport and Customer) and, in particular, on their respective strategy behaviour, which includes
the internal logic of each agent type regarding the negotiation process. And second, it is also based on the so-called
REQUEST protocol, which comprises the types of messages exchanged among the three agent types during the nego-
tiation. The following diagram presents the protocol in the typical FIPA format, where agents types are depicted as
vertical lines and the exchanged message types (or “performatives”) in horizontal arrows:

18 Chapter 4. Developing New Strategies

SimFleet Documentation, Release 1.0.1

This chapter introduces first the current, default strategy of each agent type (FleetManager, Transport and Customer)
and then explains how to introduce new strategies for any, or all, of them.

4.1.1 Fleet Manager Strategy Behaviour (DelegateRequestBehaviour)

The FleetManager Agent includes a single behaviour, which is its strategy behaviour, now described. The
goal of the stategy behaviour of the FleetManager Agent is basically to receive the “request” messages (RE-
QUEST_PERFORMATIVE) sent by the Customer agents that need a transport service and, for each request, se-
lecting the Transport agent, or agents, that may perform the service, and forward the request to them. A RE-
QUEST_PERFORMATIVE message includes the following fields:

"customer_id": Id of the Customer agent that performs the request.
"origin": Current position of the Customer, where the Transport has to pick it
→˓up.
"dest": Destination of the Customer, where the Transport needs to transport
→˓it.

The particular set of Transport agents to which the request will be forwarded depends on the allocation policy of
the FleetManager Agent, which is part of the strategy. In the default strategy behaviour for the FleetManager agent
(DelegateRequestBehaviour), the allocation policy is the simplest posible: it forwards every incoming request to all
the Transport agents that are registered in its fleet, regardless of their current statuses or any other consideration (such
as, for example, the last time they performed a service, or the distance between them and the Customer agent).

In the default strategy behaviour, the set of incoming messages that may be delivered to the FleetManager Agent is
reduced to the requests made by Customer agents, and the behaviour itself does not include multiple states. So, each
incoming message is processed in the same way, and leaves the behaviour in the same (unique) state.

Once each request has been forwarded to some (or all) the Transport agents, the goal of the FleetManager Agent for
that request is achieved. This is the starting point to the negotiation between the Customer that has issued the request
and the Transport agents that have received it, which is described in the following sections.

4.1. Introduction 19

SimFleet Documentation, Release 1.0.1

4.1.2 Transport Agents Behaviours

Transport agents incorporate two behaviours: the strategy behaviour and the moving behaviour, now described.

Strategy Behaviour (AcceptAlwaysStrategyBehaviour)

The goal of the strategy behaviour of a Transport agent is to negotiate with Customer agents which are requesting
a transport service the conditions of the service offered by the Transport, in order to achieve an agreement with
these Customer agents. When an agreement is reached between a particular Customer and Transport agents, then
the Transport agent picks up the Customer agent and transport it to its destination (and starts the Moving behaviour,
described below).

The currently implemented, default strategy behaviour is called AcceptAlwaysStrategyBehaviour, and has a direct
relation with the REQUEST protocol explained above. In particular, the behaviour can be thought of as a finite-state
machine with some different states specifying the statuses of the Transport agent regarding the strategy behaviour, and
some transitions between states, wich are triggered either by messages (of the REQUEST protocol) received by the
Transport agent, or by some other program conditions. This is depicted in the following diagram:

Fig. 1: States and transitions of the strategy behaviour of a Transport agent.

The semantics of each state are now described:

• TRANSPORT_WAITING: In this state, the Transport agent is available (free) and waiting for requests from
Customer agents. While in this state, if it receives a request message (REQUEST_PERFORMATIVE) from a
particular Customer agent, it will send the Customer a service proposal (PROPOSE_PERFORMATIVE) and it
will change its state to TRANSPORT_WAITING_FOR_APPROVAL.

• TRANSPORT_WAITING_FOR_APPROVAL: In this state, the Transport agent is waiting for the response mes-
sage from a Customer agent to which it has sent a service proposal message. While in this state, it may
receive two alternative answers from the Customer agent: (1) the Customer refuses the service proposal
(REFUSE_PERFORMATIVE), in which case the Transport changes its state back to TRANSPORT_WAITING;
or (2) the Customer accepts the proposal (ACCEPT_PERFORMATIVE), in which case it will change to the state
TRANSPORT_MOVING_TO_CUSTOMER.

20 Chapter 4. Developing New Strategies

SimFleet Documentation, Release 1.0.1

• TRANSPORT_MOVING_TO_CUSTOMER: In this state, the Transport agent and the Customer agent have
agreed to perform a transport service, and then the Transport agent starts to travel to the Customer location
in order to pick it up. This is the final state of the negotiation between the Transport and a certain Customer
agent. When the Transport agent arrives to the Customer’s position, the Transport agent executes the helper
function pick_up_customer, which automatically starts the so-called Moving behaviour in the Transport agent,
described below. It also sends a message to the Travel behaviour of the Customer agent, which starts that
behaviour (this is explained in the next section).

Moving Behaviour

This behaviour makes the Transport agent to move to the current location of the Customer agent with which it has
reached an agreement to perform a transport service. After picking the Customer agent up, the Transport will then
transport it to its destination. During that travel, the behaviour informs the Customer agent of where the Transport is
and what it is doing (going to pick up the Customer, taking the Customer to its destination, reaching the destination,
etc.). All this is performed by sending the Customer agent some messages which belong of another, dedicated protocol
called TRAVEL_PROTOCOL.

Once the Transport reaches the Customer agent’s destination and the Customer agent is informed about it, the state of
the Transport agent (of the strategy behaviour) is here changed to TRANSPORT_WAITING, indicating that it is now
free, and hence making the Transport agent available again to receiving new requests from other Customer agents.

Warning: This behaviour is internal and automatic, and it is not intended to be modified while developing new
negotiation strategies. The same applies to the TRAVEL_PROTOCOL protocol.

4.1.3 Customer Agents Behaviours

Customer agents incorporate two behaviours: the strategy behaviour and the travel behaviour, now described.

Strategy Behaviour

In the course of the REQUEST protocol, the request of a transport service made by a Customer agent is answered by
one (or several) Transport agents, each of which offering the Customer their conditions to perform such service. The
goal of the strategy behaviour of a Customer agent is to select the best of these transport service proposals, according
to its needs and/or preferences (e.g., to be picked up faster, to get the nearest available transport, to get the cheapest
service, etc.).

The currently implemented default strategy behaviour is called AcceptFirstRequestBehaviour. As in the strategy be-
haviour of the Transport agents above, here we can also consider the strategy as a finite-state machine related to the
messages (of the REQUEST protocol) received by the Customer agent, as depicted below:

The semantics of each state are now described:

• CUSTOMER_WAITING: In this state, the Customer agent requires a transport service and, periodically, sends
a request for that service until one (or many) Transport agent proposals (PROPOSE_PERFORMATIVE) are
received. When the Customer accepts a particular proposal (in the current implementation, always the first one
it receives while in this state) then it communicates so to the proposing Transport agent, and changes its own
status to CUSTOMER_ASSIGNED.

• CUSTOMER_ASSIGNED: In this state, the Customer agent has been assigned to a particular transport, and
the transport service is being performed. The Customer side of the transport service is implemented by acti-
vating the Travel behaviour, described below, which is started by a message sent by the Transport agent (in
its helper function pick_up_customer). If something goes wrong (for example, an exception is raised during
the transport service) or the Transport agent voluntarily wants to cancel the service, then the Transport agent

4.1. Introduction 21

SimFleet Documentation, Release 1.0.1

Fig. 2: States and transitions of the strategy behaviour of a Customer agent.

22 Chapter 4. Developing New Strategies

SimFleet Documentation, Release 1.0.1

sends a CANCEL_PERFORMATIVE to the Customer agent, which would then change its status back to CUS-
TOMER_WAITING, initiating the request process again.

Travel Behaviour

This behaviour is activated (in the Customer agent) when a Transport agent decides to pick up the Customer agent, by
means of a message sent by the Transport (inside the Transport agent’s helper function pick_up_customer). This
message, as well as other messages sent by the Transport agent to this behaviour, belongs to a protocol called
TRAVEL_PROTOCOL.

The messages of the TRAVEL_PROTOCOL drive the transitions between the different states of this behaviour, in the
same way that the REQUEST_PROTOCOL does for the strategy behaviour. In particular, the states of this behaviour
are: CUSTOMER_IN_TRANSPORT, when the Transport agent has reached the Customer agent’s position and has
picked it up; and CUSTOMER_IN_DEST, when the Transport agent has reached the Customer agent’s destination.
This would be the final state of the Customer agent.

Warning: This behaviour is internal and automatic, and it is not intended to be modified while developing new
negotiation strategies. The same applies to the TRAVEL_PROTOCOL protocol.

4.1.4 The Negotiation Process between Transport and Customer Agents

After separately explaining the strategy behaviour of Transport and Customer agents, this section tries to relate both
behaviours. This is important to understand how these two agent types interact with each other in order to coordinate
and reach the overall goals of the simulation.

In particular, there are three key aspects (embedded within the strategy behaviours) which influence the overall coor-
dination process implemented in the simulator, as now described:

• The conditions of a transport service proposal. The current implementation does not consider any special con-
dition other than the Transport agent being free (available to perform the service). Some aspects that could be
included in a transport proposal would be, for example, the current location of the transport, the proposed fare,
the route to take the Customer agent to its destination, etc.

• The preferences of customers in order to select a particular transport proposal. In the current implementation,
the Customer agents always accept the first proposal received from a Transport agent. In a more sophisticated
negotiation, some internal goals/conditions of the Customer agent could be taken into account in order to select a
“better” proposal. These might include, for example, the expected waiting time until the Transport agent arrives,
the amount of money that the service is expected to cost, the brand of the Transport vehicle, etc.

• The possibility of a transport to voluntarily cancel an ongoing transport service after a proposal has been ac-
cepted by a customer. This may happen only before the customer has been picked up, that is, while the transport
is moving from its initial position to the location where the customer is waiting for it. In the current implementa-
tion, a transport service cancellation can only be produced if some exception is raised while the service is being
produced (for example, if the software calculating a route for the Transport agent fails to produce a valid route).
Since new Customer (and maybe Transport) agents can appear at any time while the simulation is running, a
voluntary cancellation of transport services could improve the overall transportation of customers throughout
the simulation, allowing for a “dynamic reallocation” of customers to transports, even when transport services
were already committed.

4.1. Introduction 23

SimFleet Documentation, Release 1.0.1

4.2 Agent Foundations

The architecture of SimFleet is built on top of a multi-agent system platform called SPADE. Although it is not nec-
essary to build new agents in order to develop new coordination strategies (the simulator provides all the necessary
agents), it is interesting to know how they work and what methods they provide for the creation of coordination
strategies.

Next we will present the SPADE platform and its main features. For more documentation you can visit their website
https://github.com/javipalanca/spade.

4.2.1 SPADE

SPADE (Smart Python multi-Agent Development Environment) is a multi-agent system (MAS) platform based on the
XMPP technology and written in the Python programming language. This technology offers by itself many features
and facilities that ease the construction of MAS, such as an existing communication channel, the concepts of users
(agents) and servers (platforms) and an extensible communication protocol based on XML.

Extensible Messaging and Presence Protocol (XMPP) is an open, XML-inspired protocol for near-real-time, exten-
sible instant messaging (IM) and presence information. The protocol is built to be open and free, asynchronous,
decentralized, secure, extensible and flexible. The latter two features allow XMPP not only to be an instant messaging
protocol, but also to be extended and used for many tasks and situations (IoT, WebRTC, social, . . .). SPADE itself
uses some XMPP extensions to provide extended features to its agents, such as remote procedure calls between agents
(Jabber-RPC), file transfer (In-Band Bytestreams), an so on.

In order to fully understand how SPADE works, it is necessary to know how the agents are made up and how they
communicate. In the following sections we will summarize the SPADE agent model and its communication API.

Agent Model: Behaviours

SPADE agents are threaded-based objects that can be run concurrently and that are connected to a SPADE platform,
which internally runs an XMPP server. Each agent must provide an ID and password in order to be allowed to connect
to the platform. The agent ID is called JID and has the form of an email: a user name string plus a “@” character plus
the IP address of the SPADE server to connect to (e.g. my_agent@127.0.0.1).

The internal components of the SPADE agents that provide their intelligence are the Behaviours. A behaviour is a task
that an agent can run using some pre-defined repeating pattern. For example, the most basic behaviour type (pattern)
is the so-called cyclic behaviour, which repeatedly executes the same method over and over again, indefinitely. This
is the way to develop typical behaviours that wait for a perception, reason about it and finally execute an action, and
then wait for the next perception.

The following example is a sample of an agent with a cyclic behaviour (spade.behaviour.CyclicBehaviour
type) that waits for a perception from the keyboard input, reasons on it and executes an action, and continues to do
so indefinitely until the user presses Ctrl+C. In order to build a behaviour, you need to inherit from the type of be-
haviour you want (in the case of this example, the cyclic behaviour is implemented in the class spade.behaviour.
CyclicBehaviour) and overload the coroutine run where the body of the behaviour is implemented. If needed,
you can also overload the on_start and on_end coroutines in order to execute actions on the initialization or
shutdown of a behaviour, respectively.

import spade
import datetime
import time

class MyAgent(spade.agent.Agent):
class MyBehaviour(spade.behaviour.CyclicBehaviour):

(continues on next page)

24 Chapter 4. Developing New Strategies

https://github.com/javipalanca/spade
http://www.xmpp.org
http://www.python.org/
https://xmpp.org/uses/internet-of-things.html
https://xmpp.org/uses/webrtc.html
https://xmpp.org/uses/social.html
https://xmpp.org/extensions/xep-0009.html
https://xmpp.org/extensions/xep-0047.html

SimFleet Documentation, Release 1.0.1

(continued from previous page)

async def on_start(self):
print("Initialization of behaviour")

async def run(self):
wait for perception, raw_input is a blocking call
perception = raw_input("What's your birthday year?")
reason about the perception
age = datetime.datetime.now().year - perception
execute an action
print("You are {age} years old.".format(age=age))

async def on_end(self):
print("Shutdown of behaviour")

async def setup(self):
Create behaviour
behaviour = self.MyBehaviour()
Register behaviour in agent
self.add_behaviour(behaviour)

if __name__ == "__main__":
a = MyAgent(jid="agent@127.0.0.1", password="secret")
a.start()
while True:

try:
time.sleep(1)

except KeyboardInterrupt:
break

a.stop()

Along with the cyclic repeating pattern (or type), SPADE also provides several other types of behaviours, such as like
one-shot behaviours, periodic behaviours, finite-state machine behaviours, etc. It is important to note that SPADE
agents can execute many behaviours simultaneously, from the same or different types.

Communication API, Messages and Templates

Communication is one of the cornerstones of any multi-agent system, and SPADE is no exception. Agents can send
and receive messages using a simple API, and more importantly, they can receive them in certain behaviours according
to templates they can define.

A spade.message.Message is the class that needs to be filled in order to send a message. A Message may be
filled with several pieces of information, but the most important fields are the receiver, the content, the performative
and the protocol. The receiver must be filled with a jid address , which is a string. The content is the (string-based)
body of the message. The performative and protocol both add semantic information to the message in the context of a
conversation: they are normally used to represent the action and the rules that determine how the agents are going to
communicate in a specific semantic context and they are represented as metadata.

Tip: It is usually recommended to use a representation language for the content of the message. Although semantic
languages like OWL or RDF are normally used for this purpose, in this simulator JSON is used instead, for the sake
of simplicity.

All these fields have a getter and setter function. An example is shown next:

4.2. Agent Foundations 25

SimFleet Documentation, Release 1.0.1

import spade

msg = spade.message.Message()
msg.to = "receiver_agent@127.0.0.1"
msg.set_metadata("performative", "request")
msg.set_metadata("protocol", "my_custom_protocol")
msg.body = "{'a_key': 'a_value'}"

Hint: Other metadata fields that can be filled in the message are the content language, the ontology, and so on.

The next step is to send the message. This is done with the send coroutine provided by a Behaviour. For example:

import spade

class SenderAgent(spade.agent.Agent):
class SendBehav(spade.behaviour.OneShotBehaviour):

async def run(self):
msg = spade.message.Message()
msg.to = "receiver@127.0.0.1"
msg.set_metadata("performative", "inform")
msg.set_metadata("ontology", "myOntology")
msg.set_metadata("language", "OWL-S")
msg.body = "Hello World"

await self.send(msg) # send the message

async def setup(self):
print "MyAgent starting..."
behav = self.SendBehav()
self.add_behaviour(behav)

The reception of messages is particular in SPADE, since messages can only be received by behaviours, and so SPADE
provides each behaviour executed by any agent with its own mailbox, and defines a mechanism in order to configure
the particular behaviour that must receive each message, according to the message type. This mechanism is carried
out with Templates. When an agent receives a new message it checks if the message matches each of the behaviours
using a template with which they where registered. If there is a match, the message is delivered to the mailbox of
the corresponding behaviour, and will be read when the behaviour executes the receive method. Otherwise, the
message will be dropped.

Note: The receive coroutine accepts an optional parameter: timeout=seconds, which allows the coroutine to be
blocking until the specified number of seconds have elapsed. If the timeout is reached without a message being
received, then None is returned. If the timeout is set to 0, then the receive() function is non-blocking and
(immediately) returns either a spade.message.Message or None.

A spade.template.Template is created using the same API of spade.message.Message:

import spade
template = spade.template.Template()
template.set_metadata("ontology", "myOntology")

Note: A spade.template.Template accepts boolean operators to combine Templates (e.g. my_tpl =

26 Chapter 4. Developing New Strategies

SimFleet Documentation, Release 1.0.1

Template(template1 & template2))

At this point we can present a full example on how to build an agent that registers a behaviour with a template and
receives messages that match that template:

import spade
import asyncio

class RecvAgent(spade.agent.Agent):
class ReceiveBehav(spade.behaviour.CyclicBehaviour):

async def run(self):
await msg = self.receive(timeout=10)

Check wether the message arrived
if msg is not None:

assert "myOntology" == msg.get_metadata("ontology")
print("I got a message with the ontology 'myOntology'")

else:
print("I waited 10 seconds but got no message")

async def setup(self):
recv_behav = self.ReceiveBehav()
template = spade.template.Template()
template.set_metadata("ontology", "myOntology")

self.add_behaviour(recv_behav, template)

These are the basics of SPADE programming. You will not need to create all these structures, templates and classes in
order to use SimFleet, but it is always better to know the foundations before getting down to business.

4.3 How to Implement your own Strategies

SimFleet is designed for users to implement and test new strategies that lead to system optimization. The goal of this
simulator is to make it easier for users to work with new coordination strategies without having to introduce major
modifications to the application. For this purpose, SimFleet incorporates the so-called Strategy design pattern, which
is now introduced.

4.3.1 The Strategy Pattern

The Strategy Pattern is a design pattern that enables selecting an algorithm at runtime. The Strategy Pattern is
the best practice when an application incorporates different, alternative versions of an algorithm and we want to be
able to select any of these versions to be executed at run time. With this pattern, you can define a separate strategy
(implementation of the algorithm) in an object that encapsulates the algorithm. The application that executes the
algorithm must define an interface that every strategy (implementation) will follow, as it can be seen in the following
figure:

Following this implementation, the context object can call the current strategy implementation without knowing
how the algorithm was implemented. This design pattern was created, among others, by a group of authors com-
monly known as the Gang of Four (E. Gamma, R. Helm, R. Johnson and J. Vlissides), and it is well presented in
[GangOfFour95].

SimFleet uses the Strategy Pattern in order to enable users to implement three different strategies (one for the fleet
manager agent, one for the transport agent and one for the customer agent) without having to develop new agents or

4.3. How to Implement your own Strategies 27

SimFleet Documentation, Release 1.0.1

Fig. 3: The Strategy Pattern UML.

entering in the complexity of the simulator. Thanks to this pattern, users can develop their strategies in an external file
and pass it as an argument when the simulator is run.

SimFleet implements one interface for each of these three agents, with each interface also providing some helper
functions that intend to facilitate the most common actions of each (subclassed) agent. These three inter-
faces inherit from the StrategyBehaviour class and are called: FleetManagerStrategyBehaviour,
TransportStrategyBehaviour and CustomerStrategyBehaviour.

4.3.2 The Strategy Behaviour

The StrategyBehaviour is the metaclass from which interfaces are created for the strategies of each agent in the
simulator. It inherits from a spade.behaviour.CyclicBehaviour class, so when implementing it, you will
have to overload the run coroutine that will run cyclically (and endlessly), until the agent stops.

Helpers

The Strategy Behaviour provides also some helper functions that are useful in general for any kind of agent in the
simulator.

Danger: Don’t store information in the Behaviour itself since it is a cyclic behaviour and is run by calling
repeteadly the run coroutine, so the context of the function is not persistent. Use the agent variable that is
accesible from any behaviour as self.agent. (i.e. you can do self.agent.set("my_key", "my_value")
and self.agent.get("my_key").

The set and get functions allow to store persistent information in the agent and to recover it at any moment. The
store uses a key-value interface to store custom-defined data.

28 Chapter 4. Developing New Strategies

SimFleet Documentation, Release 1.0.1

Fig. 4: The StrategyBehaviour class and their inherited interfaces.

There is also a very useful helper function which is the logger. This is not a single function but a system of logs which
can be used to generate debug information at different levels. There are five levels of logging which are now presented,
in order of importance:

• DEBUG Used with logger.debug("my debug message"). These messages are only shown when the
simulator is called with the -v option. This is usually superfluous information.

• INFO Used with logger.info("my info message"). These messages are always shown and are the
regular information shown in logs.

• WARNING Used with logger.warn("my warning message"). These messages are always shown
and are used to show warnings to the user.

• ERROR Used with logger.error("my error message"). These messages are always shown and
are used to show errors to the user.

• SUCCESS Used with logger.success("my success message"). These messages are always
shown and are used to show success messages to the user.

In order to use this logger just remember to import the loguru library as follows:

from loguru import logger

4.3.3 Developing the FleetManager Agent Strategy

In order to develop a new strategy for the FleetManager Agent, you need to create a class that inherits from
FleetManagerStrategyBehaviour. Since this is a cyclic behaviour class that follows the Strategy Pattern
and that inherits from the StrategyBehaviour, it has all the previously presented helper functions for communi-
cation and storing data inside the agent.

Following the REQUEST protocol, the FleetManager agent is supposed to receive every request for a transport ser-
vice from customers and to carry out the action that your strategy determines (note that, in the default strategy
DelegateRequestBehaviour, the fleet manager delegates the decision to the transports themselves by redi-
recting all requests to all their registered transports without any previous, additional reasoning). The code of the
DelegateRequestBehaviour is presented below.

4.3. How to Implement your own Strategies 29

SimFleet Documentation, Release 1.0.1

The place in the code where your fleet manager strategy must be coded is the run coroutine. This function is executed
in an infinite loop until the agent stops. In addition, you may also overload the on_start and the on_end coroutines,
in order to execute code before the creation of the strategy or after its destruction, if needed.

Code

This is the code of the default fleet manager strategy DelegateRequestBehaviour:

from simfleet.fleetmanager import FleetManagerStrategyBehaviour

async def run(self):
if not self.agent.registration:

Register into Directory Agent to make your fleet public
await self.send_registration()

msg = await self.receive(timeout=5)
logger.debug("Manager received message: {}".format(msg))
if msg:

Redirect request to all your registered transports
for transport in self.get_transport_agents().values():

msg.to = str(transport["jid"])
logger.debug("Manager sent request to transport {}".format(transport["name

→˓"]))
await self.send(msg)

Helpers

The fleet manager agent incorporates two helper functions:

• send_registration

Registers its fleet in the Directory agent. This way customers can find their fleet and request for
services.

• get_transport_agents

Returns a list of the transports that are registered in that fleet.

4.3.4 Developing the Transport Agent Strategy

To develop a new strategy for the Transport Agent, you need to create a class that inherits from
TransportStrategyBehaviour. Since this is a cyclic behaviour class that follows the Strategy Pattern and
that inherits from the StrategyBehaviour, it has all the previously presented helper functions for communication
and storing data inside the agent.

The transport strategy is intended to receive requests from customers, forwarded by its fleet manager agent, and then
to send proposals to these customers in order to be selected by the corresponding customer. If a transport proposal is
accepted, then the transport begins the process of going to the customer’s current position, picking the customer up,
and taking the customer to the requested destination.

Warning: The process that implies a transport movement is out of the scope of the strategy and should not
be addressed by the strategy implementation. This customer-transfer process is automatically triggered when the
strategy executes the helper coroutine pick_up_customer (which is supposed to be the last action of a transport
strategy).

30 Chapter 4. Developing New Strategies

SimFleet Documentation, Release 1.0.1

The place in the code where your transport strategy must be coded is the run coroutine. This function is executed in
an infinite loop until the agent stops. In addition, you may also overload the on_start and the on_end coroutines,
in order to execute code before the creation of the strategy or after its destruction, if needed.

Code

The default strategy of a transport is to accept any customers’ request if the transport is not assigned to any
other customer or waiting a confirmation from any customer. This is the code of the default transport strategy
AcceptAlwaysStrategyBehaviour:

from simfleet.transport import TransportStrategyBehaviour

class AcceptAlwaysStrategyBehaviour(TransportStrategyBehaviour):
async def run(self):

if self.agent.needs_charging():
if self.agent.stations is None or len(self.agent.stations) < 1:

logger.warning("Transport {} looking for a station.".format(self.
→˓agent.name))

await self.send_get_stations()
else:

station = random.choice(list(self.agent.stations.keys()))
logger.info("Transport {} reserving station {}.".format(self.agent.

→˓name, station))
await self.send_proposal(station)
self.agent.status = TRANSPORT_WAITING_FOR_STATION_APPROVAL

msg = await self.receive(timeout=5)
if not msg:

return
logger.debug("Transport received message: {}".format(msg))
try:

content = json.loads(msg.body)
except TypeError:

content = {}

performative = msg.get_metadata("performative")
protocol = msg.get_metadata("protocol")

if protocol == QUERY_PROTOCOL:
if performative == INFORM_PERFORMATIVE:

self.agent.stations = content
logger.info("Got list of current stations: {}".format(list(self.agent.

→˓stations.keys())))
elif performative == CANCEL_PERFORMATIVE:

logger.info("Cancellation of request for stations information.")

elif protocol == REQUEST_PROTOCOL:
logger.debug("Transport {} received request protocol from customer/

→˓station.".format(self.agent.name))

if performative == REQUEST_PERFORMATIVE:
if self.agent.status == TRANSPORT_WAITING:

if not self.has_enough_autonomy(content["origin"], content["dest
→˓"]):

await self.cancel_proposal(content["customer_id"])
self.agent.status = TRANSPORT_NEEDS_CHARGING

else:
(continues on next page)

4.3. How to Implement your own Strategies 31

SimFleet Documentation, Release 1.0.1

(continued from previous page)

await self.send_proposal(content["customer_id"], {})
self.agent.status = TRANSPORT_WAITING_FOR_APPROVAL

elif performative == ACCEPT_PERFORMATIVE:
if self.agent.status == TRANSPORT_WAITING_FOR_APPROVAL:

logger.debug("Transport {} got accept from {}".format(self.agent.
→˓name,

content[
→˓"customer_id"]))

try:
self.agent.status = TRANSPORT_MOVING_TO_CUSTOMER
await self.pick_up_customer(content["customer_id"], content[

→˓"origin"], content["dest"])
except PathRequestException:

logger.error("Transport {} could not get a path to customer {}
→˓. Cancelling..."

.format(self.agent.name, content["customer_id"]))
self.agent.status = TRANSPORT_WAITING
await self.cancel_proposal(content["customer_id"])

except Exception as e:
logger.error("Unexpected error in transport {}: {}".

→˓format(self.agent.name, e))
await self.cancel_proposal(content["customer_id"])
self.agent.status = TRANSPORT_WAITING

else:
await self.cancel_proposal(content["customer_id"])

elif performative == REFUSE_PERFORMATIVE:
logger.debug("Transport {} got refusal from customer/station".

→˓format(self.agent.name))
self.agent.status = TRANSPORT_WAITING

elif performative == INFORM_PERFORMATIVE:
if self.agent.status == TRANSPORT_WAITING_FOR_STATION_APPROVAL:

logger.info("Transport {} got accept from station {}".format(self.
→˓agent.name,

→˓content["station_id"]))
try:

self.agent.status = TRANSPORT_MOVING_TO_STATION
await self.send_confirmation_travel(content["station_id"])
await self.go_to_the_station(content["station_id"], content[

→˓"dest"])
except PathRequestException:

logger.error("Transport {} could not get a path to station {}.
→˓ Cancelling..."

.format(self.agent.name, content["station_id"]))
self.agent.status = TRANSPORT_WAITING
await self.cancel_proposal(content["station_id"])

except Exception as e:
logger.error("Unexpected error in transport {}: {}".

→˓format(self.agent.name, e))
await self.cancel_proposal(content["station_id"])
self.agent.status = TRANSPORT_WAITING

elif self.agent.status == TRANSPORT_CHARGING:
if content["status"] == TRANSPORT_CHARGED:

self.agent.transport_charged()
(continues on next page)

32 Chapter 4. Developing New Strategies

SimFleet Documentation, Release 1.0.1

(continued from previous page)

await self.agent.drop_station()

elif performative == CANCEL_PERFORMATIVE:
logger.info("Cancellation of request for {} information".format(self.

→˓agent.fleet_type))

Helpers

There are some helper coroutines that are specific for the transport strategy:

async def send_proposal(self, customer_id, content=None)
async def cancel_proposal(self, customer_id, content=None)
async def pick_up_customer(self, customer_id, origin, dest)

The definition and purpose of each of them is now introduced:

• send_proposal

This helper function simplifies the composition and sending of a message containing a proposal to
a customer. It sends a Message to customer_id using the REQUEST_PROTOCOL and a
PROPOSE_PERFORMATIVE. It optionally accepts a content parameter where you can include
any additional information you may want the customer to analyze.

• cancel_proposal

This helper function simplifies the composition and sending of a message to a customer to cancel
a proposal. It sends a Message to customer_id using the REQUEST_PROTOCOL and a
CANCEL_PERFORMATIVE. It optionally accepts a content parameter where you can include
any additional information you may want the customer to analyze.

• pick_up_customer

This helper function triggers the TRAVEL_PROTOCOL of a transport, which is the protocol that
is used to transport a customer from her current position to her destination. This is a very important
and particular function. Invoking this function is normally the last instruction of this strategy, since it
means that the purpose of the strategy is accomplished (until the TRAVEL_PROTOCOL ends and
the transport is again free and able to receive new requests from some other customers).

The pick_up_customer helper receives as parameters the id of the customer and the coordinates
of the customer’s current position (origin) and its destination (dest).

4.3.5 Developing the Customer Agent Strategy

To develop a new strategy for the Customer Agent, you need to create a class that inherits from
CustomerStrategyBehaviour. Since this is a cyclic behaviour class that follows the Strategy Pattern and
that inherits from the StrategyBehaviour, it has all the previously presented helper functions for communication
and storing data inside the agent.

The customer strategy is intended to ask a fleet manager agent for a transport service, then wait for transport proposals
and, after evaluating them, choosing a particular transport proposal which will take the customer to her destination.

The place in the code where your customer strategy must be coded is the run coroutine. This function is executed in
an infinite loop until the agent stops. In addition, you may also overload the on_start and the on_end coroutines,
in order to execute code before the creation of the strategy or after its destruction, if needed.

4.3. How to Implement your own Strategies 33

SimFleet Documentation, Release 1.0.1

Code

The default strategy of a Customer agent is a dummy strategy that simply accepts the first proposal it receives. This is
the code of the default customer strategy AcceptFirstRequestBehaviour:

from simfleet.customer import CustomerStrategyBehaviour

class AcceptFirstRequestTransportBehaviour(CustomerStrategyBehaviour):

async def run(self):
if self.agent.fleetmanagers is None:

await self.send_get_managers(self.agent.fleet_type)

msg = await self.receive(timeout=5)
if msg:

performative = msg.get_metadata("performative")
if performative == INFORM_PERFORMATIVE:

self.agent.fleetmanagers = json.loads(msg.body)
return

elif performative == CANCEL_PERFORMATIVE:
logger.info("Cancellation of request for {} information".

→˓format(self.agent.type_service))
return

if self.agent.status == CUSTOMER_WAITING:
await self.send_request(content={})

msg = await self.receive(timeout=5)

if msg:
performative = msg.get_metadata("performative")
transport_id = msg.sender
if performative == PROPOSE_PERFORMATIVE:

if self.agent.status == CUSTOMER_WAITING:
logger.debug(

"Customer {} received proposal from transport {}".format(self.
→˓agent.name, transport_id))

await self.accept_transport(transport_id)
self.agent.status = CUSTOMER_ASSIGNED

else:
await self.refuse_transport(transport_id)

elif performative == CANCEL_PERFORMATIVE:
if self.agent.transport_assigned == str(transport_id):

logger.warning(
"Customer {} received a CANCEL from Transport {}.".

→˓format(self.agent.name, transport_id))
self.agent.status = CUSTOMER_WAITING

Helpers

There are some helper coroutines that are specific for the customer strategy:

async def send_get_managers(content=None)
async def send_request(self, content=None)
async def accept_transport(self, transport_aid)
async def refuse_transport(self, transport_aid)

34 Chapter 4. Developing New Strategies

SimFleet Documentation, Release 1.0.1

The definition and purpose of each of them is now introduced:

• send_get_managers

This helper makes a query to the Directory agent to find all the fleet managers that provide a fleet
service of type content. Thus, you can filter those fleet managers that provide the transport service
that you are looking for. It is expected for the user to store the response of this query in the self.
agent.fleetmanagers variable as a dictionary. This variable will be used by the next helper.

• send_request

This helper is useful to make a new request without building the entire message (the function makes it
for you). It creates a Message with a REQUEST performative and sends it to all the fleet manager
agents stored in self.agent.fleetmanagers. In addition, you can append a content to the
request message to be used by the fleet manager agent or the transport agents (e.g. your origin
coordinates or your destination coordinates).

• accept_transport

This is a helper function to send an acceptance message to a transport_id. It sends a Message
with an ACCEPT performative to the selected transport.

• refuse_transport

This is a helper function to refuse a proposal from a transport_id. It sends a Message with an
REFUSE performative to the transport whose proposal is being refused.

4.3.6 Other Helpers

SimFleet also includes a helpers module which provides some general support methods that may be useful for any
agent. These functions are now introduced:

• are_close

This helper function facilitates working with distances in maps. This helper function accepts two
coordinates (coord1 and coord2) and an optional parameter to set the tolerance in meters. It
returns True if both coordinates are closer than the tolerance in meters (10 meters by default).
Otherwise it returns False.

Example:

assert are_close([39.253, -0.341], [39.351, -0.333], 1000) == True

• distance_in_meters

This helper function returns the distance in meters between two points.

Example:

assert distance_in_meters([-0.37565, 39.44447], [-0.40392, 39.45293]) ==
→˓3264.7134341427977

4.4 How to Implement New Strategies – Recommendations

At this point is time for you to implement your own strategies to optimize the problem of dispatching transports to
customers. In this chapter we have shown you the tools to create these strategies. You have to create a file (in this
example we are using my_strategy_file.py) and develop the strategies to be tested following the next template:

4.4. How to Implement New Strategies – Recommendations 35

SimFleet Documentation, Release 1.0.1

from simfleet.fleetmanager import FleetManagerStrategyBehaviour
from simfleet.customer import CustomerStrategyBehaviour
from simfleet.transport import TransportStrategyBehaviour

##
#
FleetManager Strategy
#
##
class MyFleetManagerStrategy(FleetManagerStrategyBehaviour):

async def run(self):
Your code here

##
#
Transport Strategy
#
##
class MyTransportStrategy(TransportStrategyBehaviour):

async def run(self):
Your code here

##
#
Customer Strategy
#
##
class MyCustomerStrategy(CustomerStrategyBehaviour):

async def run(self):
Your code here

In this file, three strategies have been created for the three types of agent handled by the simulator. We have called
these strategies MyFleetManagerStrategy, MyTransportStrategy and MyCustomerStrategy.

To run the simulator with your new strategies the configuration file accepts three parameters with the name of the file
(without extension) and the name of the class of each strategy.

{
"fleets": [...],
"transports": [...],
"customers": [...],
"stations": [...],
"simulation_name": "My Config",
"max_time": 1000,
"transport_strategy": "my_strategy_file.MyTransportStrategy",
"customer_strategy": "my_strategy_file.MyCustomerStrategy",
"fleetmanager_strategy": "my_strategy_file.MyFleetManagerStrategy",
...
"host": "localhost",

}

$ simfleet --config my_custom_simulation.json

Warning: The file must be in the current working directory and it must be referenced without the extension (if
the file is named my_strategy_file.py use my_strategy_file when calling the simulator.

36 Chapter 4. Developing New Strategies

SimFleet Documentation, Release 1.0.1

Once run the simulator you can test your strategies using the graphical web interface or by inspecting the output of the
logs in the command line.

4.4. How to Implement New Strategies – Recommendations 37

SimFleet Documentation, Release 1.0.1

38 Chapter 4. Developing New Strategies

CHAPTER 5

API Documentation

Information on specific functions, classes, and methods.

5.1 simfleet package

5.1.1 Submodules

5.1.2 simfleet.cli module

Console script for SimFleet.

5.1.3 simfleet.config module

class simfleet.config.SimfleetConfig(filename=None, name=None, max_time=None, ver-
bose=None)

Bases: object

A scenario object reads a file with a JSON representation of a scenario and is used to create the participant
agents.

load_config(filename)

num_customers

num_managers

num_stations

num_transport

simfleet.config.hide_passwords(item, key=None)

39

SimFleet Documentation, Release 1.0.1

5.1.4 simfleet.customer module

class simfleet.customer.CustomerAgent(agentjid, password)
Bases: spade.agent.Agent

get_pickup_time()
Returns the time that the customer was waiting to be picked up since it has been assigned to a transport.

Returns The time that the customer was waiting to a transport since it has been assigned.

Return type float

get_position()
Returns the current position of the customer.

Returns the coordinates of the current position of the customer (lon, lat)

Return type list

get_waiting_time()
Returns the time that the agent was waiting for a transport, from its creation until it gets into a transport.

Returns The time the customer was waiting.

Return type float

is_in_destination()
Checks if the customer has arrived to its destination.

Returns whether the customer is at its destination or not

Return type bool

request_path(origin, destination)
Requests a path between two points (origin and destination) using the RouteAgent service.

Parameters

• origin (list) – the coordinates of the origin of the requested path

• destination (list) – the coordinates of the end of the requested path

Returns A list of points that represent the path from origin to destination, the distance and the
estimated duration

Return type list, float, float

run_strategy()
import json Runs the strategy for the customer agent.

set_directory(directory_id)
Sets the directory JID address :param directory_id: the DirectoryAgent jid :type directory_id: str

set_fleet_type(fleet_type)
Sets the type of fleet to be used.

Parameters fleet_type (str) – the type of the fleet to be used

set_fleetmanager(fleetmanagers)
Sets the fleetmanager JID address :param fleetmanagers: the fleetmanager jid :type fleetmanagers: str

set_icon(icon)

set_id(agent_id)
Sets the agent identifier :param agent_id: The new Agent Id :type agent_id: str

40 Chapter 5. API Documentation

SimFleet Documentation, Release 1.0.1

set_position(coords=None)
Sets the position of the customer. If no position is provided it is located in a random position.

Parameters coords (list) – a list coordinates (longitude and latitude)

set_route_agent(route_id)
Sets the route agent JID address :param route_id: the route agent jid :type route_id: str

set_target_position(coords=None)
Sets the target position of the customer (i.e. its destination). If no position is provided the destination is
setted to a random position.

Parameters coords (list) – a list coordinates (longitude and latitude)

setup()
Setup agent before startup. This coroutine may be overloaded.

to_json()
Serializes the main information of a customer agent to a JSON format. It includes the id of the agent,
its current position, the destination coordinates of the agent, the current status, the transport that it has
assigned (if any) and its waiting time.

Returns

a JSON doc with the main information of the customer.

Example:

{
"id": "cphillips",
"position": [39.461327, -0.361839],
"dest": [39.460599, -0.335041],
"status": 24,
"transport": "ghiggins@127.0.0.1",
"waiting": 13.45

}

Return type dict

total_time()
Returns the time since the customer was activated until it reached its destination.

Returns the total time of the customer’s simulation.

Return type float

class simfleet.customer.CustomerStrategyBehaviour
Bases: simfleet.utils.StrategyBehaviour

Class from which to inherit to create a transport strategy. You must overload the run coroutine

Helper functions:

• send_request

• accept_transport

• refuse_transport

accept_transport(transport_id)
Sends a spade.message.Message to a transport to accept a travel proposal. It uses the RE-
QUEST_PROTOCOL and the ACCEPT_PERFORMATIVE.

Parameters transport_id (str) – The Agent JID of the transport

5.1. simfleet package 41

SimFleet Documentation, Release 1.0.1

on_start()
Initializes the logger and timers. Call to parent method if overloaded.

refuse_transport(transport_id)
Sends an spade.message.Message to a transport to refuse a travel proposal. It uses the RE-
QUEST_PROTOCOL and the REFUSE_PERFORMATIVE.

Parameters transport_id (str) – The Agent JID of the transport

run()
Body of the behaviour. To be implemented by user.

send_get_managers(content=None)
Sends an spade.message.Message to the DirectoryAgent to request a managers. It uses the
QUERY_PROTOCOL and the REQUEST_PERFORMATIVE. If no content is set a default content with
the type_service that needs :param content: Optional content dictionary :type content: dict

send_request(content=None)
Sends an spade.message.Message to the fleetmanager to request a transport. It uses the RE-
QUEST_PROTOCOL and the REQUEST_PERFORMATIVE. If no content is set a default content with
the customer_id, origin and target coordinates is used.

Parameters content (dict) – Optional content dictionary

class simfleet.customer.TravelBehaviour
Bases: spade.behaviour.CyclicBehaviour

This is the internal behaviour that manages the movement of the customer. It is triggered when the transport
informs the customer that it is going to the customer’s position until the customer is droppped in its destination.

on_start()
Coroutine called before the behaviour is started.

run()
Body of the behaviour. To be implemented by user.

5.1.5 simfleet.directory module

class simfleet.directory.DirectoryAgent(agentjid, password)
Bases: spade.agent.Agent

run_strategy()
Runs the strategy for the directory agent.

set_id(agent_id)
Sets the agent identifier

Parameters agent_id (str) – The new agent id

setup()
Setup agent before startup. This coroutine may be overloaded.

class simfleet.directory.DirectoryStrategyBehaviour
Bases: simfleet.utils.StrategyBehaviour

Class from which to inherit to create a directory strategy.

on_start()
Coroutine called before the behaviour is started.

42 Chapter 5. API Documentation

SimFleet Documentation, Release 1.0.1

run()
Body of the behaviour. To be implemented by user.

send_negative(agent_id)
Sends a message to the current assigned manager/station to cancel the registration.

Parameters agent_id (str) – the id of the manager/station

send_services(agent_id, type_service)
Send a message to the customer or transport with the current information of the type of service they need.

Parameters

• agent_id (str) – the id of the manager/station

• type_service (str) – the type of service

class simfleet.directory.RegistrationBehaviour
Bases: spade.behaviour.CyclicBehaviour

add_service(content)
Adds a new service to the store.

Parameters content (dict) – content to be added

on_start()
Coroutine called before the behaviour is started.

remove_service(service_type, agent)
Erase a service from the store.

Parameters

• service_type (str) – the service type to be erased

• agent (str) – an str with the jid of the agent to be erased

run()
Body of the behaviour. To be implemented by user.

send_confirmation(agent_id)
Send a spade.message.Message with an acceptance to manager/station to register in the dictionary

5.1.6 simfleet.fleetmanager module

class simfleet.fleetmanager.FleetManagerAgent(agentjid, password)
Bases: spade.agent.Agent

FleetManager agent that manages the requests between transports and customers

clear_agents()
Resets the set of transports and customers. Resets the simulation clock.

run_strategy()
Runs the strategy for the transport agent.

set_directory(directory_id)
Sets the directory JID address :param directory_id: the DirectoryAgent jid :type directory_id: str

set_fleet_type(fleet_type)
Sets the type of service to the fleet :param type_service: type of service :type type_service: str

set_icon(icon)

5.1. simfleet package 43

SimFleet Documentation, Release 1.0.1

set_id(agent_id)
Sets the agent identifier

Parameters agent_id (str) – The new Agent Id

set_registration(status)
Sets the status of registration :param status: True if the transport agent has registered or False if not :type
status: boolean

setup()
Setup agent before startup. This coroutine may be overloaded.

class simfleet.fleetmanager.FleetManagerStrategyBehaviour
Bases: simfleet.utils.StrategyBehaviour

Class from which to inherit to create a coordinator strategy. You must overload the _process() method

Helper functions:

• get_transport_agents()

get_transport_agents()
Gets the list of registered transports

Returns a list of TransportAgent

Return type list

on_start()
Coroutine called before the behaviour is started.

run()
Body of the behaviour. To be implemented by user.

send_registration()
Send a spade.message.Message with a proposal to directory to register.

class simfleet.fleetmanager.TransportRegistrationForFleetBehaviour
Bases: spade.behaviour.CyclicBehaviour

accept_registration(agent_id)
Send a spade.message.Message with an acceptance to transport to register in the fleet.

add_transport(agent)
Adds a new TransportAgent to the store.

Parameters agent (TransportAgent) – the instance of the TransportAgent to be added

on_start()
Coroutine called before the behaviour is started.

reject_registration(agent_id)
Send a spade.message.Message with an acceptance to transport to register in the fleet.

remove_transport(key)
Erase a TransportAgent to the store.

Parameters agent (TransportAgent) – the instance of the TransportAgent to be erased

run()
Body of the behaviour. To be implemented by user.

44 Chapter 5. API Documentation

SimFleet Documentation, Release 1.0.1

5.1.7 simfleet.helpers module

Helpers module

These functions are useful for the develop of new strategies.

exception simfleet.helpers.AlreadyInDestination
Bases: Exception

This exception is raised when an agent wants to move to a destination where it is already there.

exception simfleet.helpers.PathRequestException
Bases: Exception

This exception is raised when a path could not be computed.

simfleet.helpers.are_close(coord1, coord2, tolerance=10)
Checks wheter two points are close or not. The tolerance is expressed in meters.

Parameters

• coord1 (list) – a coordinate (longitude, latitude)

• coord2 (list) – another coordinate (longitude, latitude)

• tolerance (int) – tolerance in meters

Returns whether the two coordinates are closer than tolerance or not

Return type bool

simfleet.helpers.distance_in_meters(coord1, coord2)
Returns the distance between two coordinates in meters.

Parameters

• coord1 (list) – a coordinate (longitude, latitude)

• coord2 – another coordinate (longitude, latitude)

Returns distance meters between the two coordinates

Return type float

simfleet.helpers.kmh_to_ms(speed_in_kmh)
Convert kilometers/hour to meters/second.

Parameters speed_in_kmh (float) – speed in kilometers/hour

Returns the speed in meters/second

Return type float

simfleet.helpers.random_position()
Returns a random position inside the map.

Returns a point (longitude and latitude)

Return type list

5.1.8 simfleet.protocol module

protocol and performative constants

5.1. simfleet package 45

SimFleet Documentation, Release 1.0.1

5.1.9 simfleet.route module

class simfleet.route.RouteAgent(agentjid, password)
Bases: spade.agent.Agent

The RouteAgent receives request for paths, queries an OSRM server and returns the information. It also caches
the queries to avoid overloading the OSRM server.

class RequestRouteBehaviour
Bases: spade.behaviour.CyclicBehaviour

This cyclic behaviour listens for route requests from other agents. When a message is received it answers
with the path.

on_end()
Coroutine called after the behaviour is done or killed.

on_start()
Coroutine called before the behaviour is started.

run()
Body of the behaviour. To be implemented by user.

get_route(origin, destination)
Checks the cache for a path, if not found then it queries the OSRM server.

Parameters

• origin (list) – origin coordinate (longitude, latitude)

• destination (list) – target coordinate (longitude, latitude)

Returns a dict with three keys: path, distance and duration

Return type dict

load_cache()
Loads the cache from file.

persist_cache()
Persists the cache to a JSON file.

static request_route_to_server(origin, destination)
Queries the OSRM for a path.

Parameters

• origin (list) – origin coordinate (longitude, latitude)

• destination (list) – target coordinate (longitude, latitude)

Returns list, float, float = the path, the distance of the path and the estimated duration

setup()
Setup agent before startup. This coroutine may be overloaded.

5.1.10 simfleet.simulator module

class simfleet.simulator.SimulatorAgent(config, agentjid=’simulator@localhost’, pass-
word=’simulator123j3’)

Bases: spade.agent.Agent

The Simulator. It manages all the simulation processes. Tasks done by the simulator at initialization:

46 Chapter 5. API Documentation

SimFleet Documentation, Release 1.0.1

1. Create the XMPP server

2. Run the SPADE backend

3. Run the directory and route agents.

4. Create agents defined in scenario (if any).

After these tasks are done in the Simulator constructor, the simulation is started when the run method is called.

add_customer(agent)
Adds a new CustomerAgent to the store.

Parameters agent (CustomerAgent) – the instance of the CustomerAgent to be added

add_manager(agent)
Adds a new FleetManagerAgent to the store.

Parameters agent (FleetManagerAgent) – the instance of the FleetManagerAgent to be
added

add_station(agent)
Adds a new StationAgent to the store.

Parameters agent (StationAgent) – the instance of the StationAgent to be added

add_transport(agent)
Adds a new TransportAgent to the store.

Parameters agent (TransportAgent) – the instance of the TransportAgent to be added

all_customers_in_destination()
Checks whether the simulation has finished or not. A simulation is finished if all customers are at their
destinations. If there is no customers the simulation is not finished.

Returns:‘ bool: whether the simulation has finished or not.

assigning_fleet_icon(fleet_type, default=None)

async_start_agent(agent)

clean_controller(request)
Web controller that resets the simulator to a clean state.

Returns no template is returned since this is an AJAX controller, a dict with status=done

Return type dict

clear_agents()
Resets the set of transports and customers. Resets the simulation clock.

clear_stopped_agents()
Removes from the transport and customer sets every agent that is stopped.

collect_stats()
Collects stats from all participant agents and from the simulation and stores it in three dataframes.

create_customer_agent(name, password, fleet_type, position, strategy=None, target=None)
Create a customer agent.

Parameters

• name (str) – name of the agent

• password (str) – password of the agent

5.1. simfleet package 47

SimFleet Documentation, Release 1.0.1

• position (list) – initial coordinates of the agent

• fleet_type (str) – type of he fleet to be or demand

• target (list, optional) – destination coordinates of the agent

• speed (float, optional) – speed of the vehicle

create_directory_agent(name, password)

create_fleetmanager_agent(name, password, fleet_type, strategy=None, icon=None)

create_station_agent(name, password, position, power, places, strategy=None)
Create a customer agent.

Parameters

• name (str) – name of the agent

• password (str) – password of the agent

• position (list) – initial coordinates of the agent

• fleet_type (str) – type of he fleet to be or demand

• target (list, optional) – destination coordinates of the agent

• speed (float, optional) – speed of the vehicle

create_transport_agent(name, password, fleet_type, fleetmanager, position, strategy=None,
speed=None, autonomy=None, current_autonomy=None)

customer_agents
Gets the dict of registered customers

Returns a dict of CustomerAgent with the name in the key

Return type dict

download_stats_excel_controller(request)
Web controller that returns an Excel file with the simulation results.

Returns a Response of type “attachment” with the file content.

Return type Response

download_stats_json_controller(request)
Web controller that returns a JSON file with the simulation results.

Returns a Response of type “attachment” with the file content.

Return type Response

entities_controller(request)
Web controller that returns a dict with the entities of the simulator and their statuses.

Example of the entities returned data:

{
"customers": [

{
"status": 24,
"transport": "transport2@127.0.0.1",
"dest": [39.463356, -0.376463],
"waiting": 3.25,
"position": [39.460568, -0.352529],
"id": "michaelstewart"

(continues on next page)

48 Chapter 5. API Documentation

SimFleet Documentation, Release 1.0.1

(continued from previous page)

}
],
"transports": [

{
"status": 11,
"customer": "michaelstewart@127.0.0.1",
"assignments": 1,
"path": [

[39.478328, -0.406712],
[39.478317, -0.406814],
[39.460568, -0.352529]

],
"dest": [39.460568, -0.352529],
"position": [39.468131, -0.39685],
"speed": 327.58,
"id": "transport2",
"distance": "6754.60"

}
],
"stats": {

"totaltime": "-1.00",
"waiting": "3.25",
"finished": False,
"is_running": True

},
"tree": {

"name": "Agents",
"children": [

{
"count": "1",
"name": "Transports",
"children": [{ "status": 11, "name": " transport2", "icon":

→˓"fa-transport" }]
},
{

"count": "1",
"name": "Customers",
"children": [{ "status": 24, "name": " michaelstewart", "icon

→˓": "fa-user" }]
}

]
},
"authenticated": False,
"stations": [

{
"status": 24,
"position": [39.460568, -0.352529],
"id": "michaelstewart"

}
],

}

Returns no template is returned since this is an AJAX controller, a dict with the list of transports,
the list of customers, the tree view to be showed in the sidebar and the stats of the simulation.

Return type dict

5.1. simfleet package 49

SimFleet Documentation, Release 1.0.1

generate_tree()
Generates the tree view in JSON format to be showed in the sidebar.

Returns a dict with all the agents in the simulator, with their name, status and icon.

Return type dict

get_customer_stats()
Creates a dataframe with the simulation stats of the customers The dataframe includes for each customer
its name, waiting time, total time and status.

Returns the dataframe with the customers stats.

Return type pandas.DataFrame

get_directory()

get_manager_stats()
Creates a dataframe with the simulation stats of the customers The dataframe includes for each customer
its name, waiting time, total time and status.

Returns the dataframe with the customers stats.

Return type pandas.DataFrame

get_simulation_time()
Returns the elapsed simulation time to the current time. If the simulation is not started it returns 0.

Returns the whole simulation time.

Return type float

get_station_stats()
Creates a dataframe with the simulation stats of the customers The dataframe includes for each customer
its name, waiting time, total time and status.

Returns the dataframe with the customers stats.

Return type pandas.DataFrame

get_stats()
Generates the stats of the simulation in JSON format.

Examples:

{
"totaltime": "12.25",
"waiting": "3.25",
"finished": False,
"is_running": True

}

Returns a dict with the total time, waiting time, is_running and finished values

Return type dict

get_stats_dataframes()
Collects simulation stats and returns 3 dataframes with the information: A general dataframe with the
average information, a dataframe with the transport’s information and a dataframe with the customer’s
information. :returns: avg df, transport df and customer df :rtype: pandas.Dataframe, pandas.Dataframe,
pandas.Dataframe

50 Chapter 5. API Documentation

SimFleet Documentation, Release 1.0.1

get_transport_stats()
Creates a dataframe with the simulation stats of the transports The dataframe includes for each transport
its name, assignments, traveled distance and status.

Returns the dataframe with the transports stats.

Return type pandas.DataFrame

index_controller(request)
Web controller that returns the index page of the simulator.

Returns the name of the template, the data to be pre-processed in the template

Return type dict

init_controller(request)

is_simulation_finished()
Checks if the simulation is finished. A simulation is finished if the max simulation time has been reached
or when the fleetmanager says it.

Returns whether the simulation is finished or not.

Return type bool

load_icons(filename)

load_scenario()
Load the information from the preloaded scenario through the SimfleetConfig class

manager_agents
Gets the dict of registered FleetManager

Returns a dict of FleetManagerAgents with the name in the key

Return type dict

print_stats()
Prints the dataframes collected by collect_stats.

request_path(origin, destination)
Requests a path to the RouteAgent.

Parameters

• origin (list) – the origin coordinates (lon, lat)

• destination (list) – the target coordinates (lon, lat)

Returns the path as a list of points, the distance of the path, the estimated duration of the path

Return type list, float, float

run()
Starts the simulation

run_controller(request)
Web controller that starts the simulator.

Returns no template is returned since this is an AJAX controller, an empty data dict is returned

Return type dict

set_default_strategies(fleetmanager_strategy, transport_strategy, customer_strategy, direc-
tory_strategy, station_strategy)

Gets the strategy strings and loads their classes. This strategies are prepared to be injected into any new
transport or customer agent.

5.1. simfleet package 51

SimFleet Documentation, Release 1.0.1

Parameters

• fleetmanager_strategy (str) – the path to the fleetmanager strategy

• transport_strategy (str) – the path to the transport strategy

• customer_strategy (str) – the path to the customer strategy

• directory_strategy (str) – the path to the directory strategy

• station_strategy (str) – the path to the station strategy

set_directory(agent)

set_icon(agent, icon, default=None)

setup()
Setup agent before startup. This coroutine may be overloaded.

station_agents
Gets the dict of registered stations

Returns a dict of StationAgent with the name in the key

Return type dict

stop()
Finishes the simulation and prints simulation stats. Tasks done when a simulation is stopped:

1. Stop participant agents.

2. Print stats.

3. Stop Route agent.

4. Stop fleetmanager agent.

stop_agents()
Stops the simulator and all the agents

stop_agents_controller(request)
Web controller that stops all the customer and transport agents.

Returns no template is returned since this is an AJAX controller, a dict with status=done

Return type dict

time_is_out()
Checks if the max simulation time has been reached.

Returns whether the max simulation time has been reached or not.

Return type bool

transport_agents
Gets the dict of registered transports

Returns a dict of TransportAgent with the name in the key

Return type dict

write_excel(filename)
Writes the collected data by collect_stats in an excel file.

Parameters filename (str) – name of the excel file.

write_file(filename, fileformat=’json’)
Writes the dataframes collected by collect_stats in JSON or Excel format.

52 Chapter 5. API Documentation

SimFleet Documentation, Release 1.0.1

Parameters

• filename (str) – name of the output file to be written.

• fileformat (str) – format of the output file. Choices: json or excel

write_json(filename)
Writes the collected data by collect_stats in a json file.

Parameters filename (str) – name of the json file.

5.1.11 simfleet.station module

class simfleet.station.ChargeBehaviour(start_at, transport_id)
Bases: spade.behaviour.TimeoutBehaviour

charging_complete()
Send a message to the transport agent that the vehicle load has been completed

run()
Body of the behaviour. To be implemented by user.

class simfleet.station.RegistrationBehaviour
Bases: spade.behaviour.CyclicBehaviour

on_start()
Coroutine called before the behaviour is started.

run()
Body of the behaviour. To be implemented by user.

send_registration()
Send a spade.message.Message with a proposal to directory to register.

set_registration(decision)

class simfleet.station.StationAgent(agentjid, password)
Bases: spade.agent.Agent

assigning_place()
Set a space in the charging station for the transport that has been accepted, when the available spaces are
zero, the status will change to BUSY_STATION

charging_transport(need, transport_id)

deassigning_place()
Leave a space of the charging station, when the station has free spaces, the status will change to
FREE_STATION

get_available_places()

get_position()
Returns the current position of the station.

Returns the coordinates of the current position of the customer (lon, lat)

Return type list

get_power()

get_status()

run_strategy()
Sets the strategy for the transport agent.

5.1. simfleet package 53

SimFleet Documentation, Release 1.0.1

set_available_places(places)

set_directory(directory_id)
Sets the directory JID address :param directory_id: the DirectoryAgent jid :type directory_id: str

set_icon(icon)

set_id(agent_id)
Sets the agent identifier

Parameters agent_id (str) – The new Agent Id

set_position(coords=None)
Sets the position of the station. If no position is provided it is located in a random position.

Parameters coords (list) – a list coordinates (longitude and latitude)

set_power(charge)

set_registration(status)
Sets the status of registration :param status: True if the transport agent has registered or False if not :type
status: boolean

set_status(state=’FREE_STATION’)

set_type(station_type)

setup()
Setup agent before startup. This coroutine may be overloaded.

to_json()
Serializes the main information of a station agent to a JSON format. It includes the id of the agent,
its current position, the destination coordinates of the agent, the current status, the transport that it has
assigned (if any) and its waiting time.

Returns

a JSON doc with the main information of the station.

Example:

{
"id": "cphillips",
"position": [39.461327, -0.361839],
"status": True,
"places": 10,
"power": 10

}

Return type dict

class simfleet.station.StationStrategyBehaviour
Bases: simfleet.utils.StrategyBehaviour

Class from which to inherit to create a station strategy. You must overload the run() method

Helper functions:

• get_transport_agents()

accept_transport(transport_id)
Sends a spade.message.Message to a transport to accept a travel proposal for charge. It uses the
REQUEST_PROTOCOL and the ACCEPT_PERFORMATIVE.

Parameters transport_id (str) – The Agent JID of the transport

54 Chapter 5. API Documentation

SimFleet Documentation, Release 1.0.1

on_start()
Coroutine called before the behaviour is started.

refuse_transport(transport_id)
Sends an spade.message.Message to a transport to refuse a travel proposal for charge. It uses the
REQUEST_PROTOCOL and the REFUSE_PERFORMATIVE.

Parameters transport_id (str) – The Agent JID of the transport

run()
Body of the behaviour. To be implemented by user.

class simfleet.station.TravelBehaviour
Bases: spade.behaviour.CyclicBehaviour

This is the internal behaviour that manages the inform of the station. It is triggered when the transport informs
the station that it is going to the customer’s position until the customer is droppped in its destination.

on_start()
Coroutine called before the behaviour is started.

run()
Body of the behaviour. To be implemented by user.

5.1.12 simfleet.strategies module

class simfleet.strategies.AcceptAlwaysStrategyBehaviour
Bases: simfleet.transport.TransportStrategyBehaviour

The default strategy for the Transport agent. By default it accepts every request it receives if available.

run()
Body of the behaviour. To be implemented by user.

class simfleet.strategies.AcceptFirstRequestBehaviour
Bases: simfleet.customer.CustomerStrategyBehaviour

The default strategy for the Customer agent. By default it accepts the first proposal it receives.

run()
Body of the behaviour. To be implemented by user.

class simfleet.strategies.DelegateRequestBehaviour
Bases: simfleet.fleetmanager.FleetManagerStrategyBehaviour

The default strategy for the FleetManager agent. By default it delegates all requests to all transports.

run()
Body of the behaviour. To be implemented by user.

5.1.13 simfleet.strategies_fsm module

class simfleet.strategies_fsm.FSMTransportStrategyBehaviour
Bases: spade.behaviour.FSMBehaviour

setup()

class simfleet.strategies_fsm.TransportMovingState
Bases: simfleet.transport.TransportStrategyBehaviour, spade.behaviour.State

5.1. simfleet package 55

SimFleet Documentation, Release 1.0.1

on_start()
Coroutine called before the behaviour is started.

run()
Body of the behaviour. To be implemented by user.

class simfleet.strategies_fsm.TransportWaitingForApprovalState
Bases: simfleet.transport.TransportStrategyBehaviour, spade.behaviour.State

on_start()
Coroutine called before the behaviour is started.

run()
Body of the behaviour. To be implemented by user.

class simfleet.strategies_fsm.TransportWaitingState
Bases: simfleet.transport.TransportStrategyBehaviour, spade.behaviour.State

on_start()
Coroutine called before the behaviour is started.

run()
Body of the behaviour. To be implemented by user.

simfleet.strategies_fsm.passenger_in_transport_callback(old, new)

5.1.14 simfleet.transport module

class simfleet.transport.RegistrationBehaviour
Bases: spade.behaviour.CyclicBehaviour

on_start()
Coroutine called before the behaviour is started.

run()
Body of the behaviour. To be implemented by user.

send_registration()
Send a spade.message.Message with a proposal to manager to register.

class simfleet.transport.TransportAgent(agentjid, password)
Bases: spade.agent.Agent

class MovingBehaviour(period, start_at=None)
Bases: spade.behaviour.PeriodicBehaviour

This is the internal behaviour that manages the movement of the transport. It is triggered when the transport
has a new destination and the periodic tick is recomputed at every step to show a fine animation. This
moving behaviour includes to update the transport coordinates as it moves along the path at the specified
speed.

run()
Body of the behaviour. To be implemented by user.

arrived_to_destination()
Informs that the transport has arrived to its destination. It recomputes the new destination and path if
picking up a customer or drops it and goes to WAITING status again.

arrived_to_station()
Informs that the transport has arrived to its destination. It recomputes the new destination and path if
picking up a customer or drops it and goes to WAITING status again.

56 Chapter 5. API Documentation

SimFleet Documentation, Release 1.0.1

calculate_km_expense(origin, start, dest=None)

cancel_customer(data=None)
Sends a message to the current assigned customer to cancel the assignment.

Parameters data (dict, optional) – Complementary info about the cancellation

drop_customer()
Drops the customer that the transport is carring in the current location.

drop_station()
Drops the customer that the transport is carring in the current location.

get_autonomy()

get_position()
Returns the current position of the customer.

Returns the coordinates of the current position of the customer (lon, lat)

Return type list

inform_customer(status, data=None)
Sends a message to the current assigned customer to inform her about a new status.

Parameters

• status (int) – The new status code

• data (dict, optional) – complementary info about the status

inform_station(data=None)
Sends a message to the current assigned customer to inform her about a new status.

Parameters

• status (int) – The new status code

• data (dict, optional) – complementary info about the status

is_customer_in_transport()

is_free()

is_in_destination()
Checks if the transport has arrived to its destination.

Returns whether the transport is at its destination or not

Return type bool

move_to(dest)
Moves the transport to a new destination.

Parameters dest (list) – the coordinates of the new destination (in lon, lat format)

Raises AlreadyInDestination – if the transport is already in the destination coordinates.

needs_charging()

request_path(origin, destination)
Requests a path between two points (origin and destination) using the RouteAgent service.

Parameters

• origin (list) – the coordinates of the origin of the requested path

• destination (list) – the coordinates of the end of the requested path

5.1. simfleet package 57

SimFleet Documentation, Release 1.0.1

Returns A list of points that represent the path from origin to destination, the distance and the
estimated duration

Return type list, float, float

Examples

>>> path, distance, duration = await self.request_path(origin=[0,0],
→˓destination=[1,1])
>>> print(path)
[[0,0], [0,1], [1,1]]
>>> print(distance)
2.0
>>> print(duration)
3.24

run_strategy()
Sets the strategy for the transport agent.

Parameters strategy_class (TransportStrategyBehaviour) – The class to be
used. Must inherit from TransportStrategyBehaviour

send(msg)

set_autonomy(autonomy, current_autonomy=None)

set_directory(directory_id)
Sets the directory JID address :param directory_id: the DirectoryAgent jid :type directory_id: str

set_fleet_type(fleet_type)

set_fleetmanager(fleetmanager_id)
Sets the fleetmanager JID address :param fleetmanager_id: the fleetmanager jid :type fleetmanager_id: str

set_icon(icon)

set_id(agent_id)
Sets the agent identifier

Parameters agent_id (str) – The new Agent Id

set_initial_position(coords)

set_km_expense(expense=0)

set_position(coords=None)
Sets the position of the transport. If no position is provided it is located in a random position.

Parameters coords (list) – a list coordinates (longitude and latitude)

set_registration(status, content=None)
Sets the status of registration :param status: True if the transport agent has registered or False if not :type
status: boolean :param content: :type content: dict

set_route_agent(route_id)
Sets the route agent JID address :param route_id: the route agent jid :type route_id: str

set_speed(speed_in_kmh)
Sets the speed of the transport.

Parameters speed_in_kmh (float) – the speed of the transport in km per hour

58 Chapter 5. API Documentation

SimFleet Documentation, Release 1.0.1

setup()
Setup agent before startup. This coroutine may be overloaded.

step()
Advances one step in the simulation

to_json()
Serializes the main information of a transport agent to a JSON format. It includes the id of the agent, its
current position, the destination coordinates of the agent, the current status, the speed of the transport (in
km/h), the path it is following (if any), the customer that it has assigned (if any), the number of assignments
if has done and the distance that the transport has traveled.

Returns

a JSON doc with the main information of the transport.

Example:

{
"id": "cphillips",
"position": [39.461327, -0.361839],
"dest": [39.460599, -0.335041],
"status": 24,
"speed": 1000,
"path": [[0,0], [0,1], [1,0], [1,1], ...],
"customer": "ghiggins@127.0.0.1",
"assignments": 2,
"distance": 3481.34

}

Return type dict

transport_charged()

watch_value(key, callback)
Registers an observer callback to be run when a value is changed

Parameters

• key (str) – the name of the value

• callback (function) – a function to be called when the value changes. It receives
two arguments: the old and the new value.

class simfleet.transport.TransportStrategyBehaviour
Bases: simfleet.utils.StrategyBehaviour

Class from which to inherit to create a transport strategy. You must overload the `run coroutine

Helper functions:

• pick_up_customer

• send_proposal

• cancel_proposal

cancel_proposal(customer_id, content=None)
Send a spade.message.Message to cancel a proposal. If the content is empty the proposal is sent
without content.

Parameters

• customer_id (str) – the id of the customer

5.1. simfleet package 59

SimFleet Documentation, Release 1.0.1

• content (dict, optional) – the optional content of the message

go_to_the_station(station_id, dest)
Starts a TRAVEL_PROTOCOL to pick up a customer and get him to his destination. It automatically
launches all the travelling process until the customer is delivered. This travelling process includes to
update the transport coordinates as it moves along the path at the specified speed.

Parameters

• customer_id (str) – the id of the customer

• origin (list) – the coordinates of the current location of the customer

• dest (list) – the coordinates of the target destination of the customer

has_enough_autonomy(customer_orig, customer_dest)

on_start()
Coroutine called before the behaviour is started.

pick_up_customer(customer_id, origin, dest)
Starts a TRAVEL_PROTOCOL to pick up a customer and get him to his destination. It automatically
launches all the travelling process until the customer is delivered. This travelling process includes to
update the transport coordinates as it moves along the path at the specified speed.

Parameters

• customer_id (str) – the id of the customer

• origin (list) – the coordinates of the current location of the customer

• dest (list) – the coordinates of the target destination of the customer

run()
Body of the behaviour. To be implemented by user.

send_confirmation_travel(station_id)

send_get_stations(content=None)

send_proposal(customer_id, content=None)
Send a spade.message.Message with a proposal to a customer to pick up him. If the content is
empty the proposal is sent without content.

Parameters

• customer_id (str) – the id of the customer

• content (dict, optional) – the optional content of the message

5.1.15 simfleet.utils module

class simfleet.utils.RequestRouteBehaviour(msg: spade.message.Message, origin: list,
destination: list, route_agent: str)

Bases: spade.behaviour.OneShotBehaviour

A one-shot behaviour that is executed to request for a new route to the route agent.

run()
Body of the behaviour. To be implemented by user.

class simfleet.utils.StrategyBehaviour
Bases: spade.behaviour.CyclicBehaviour

The behaviour that all parent strategies must inherit from. It complies with the Strategy Pattern.

60 Chapter 5. API Documentation

SimFleet Documentation, Release 1.0.1

simfleet.utils.avg(array)
Makes the average of an array without Nones. :param array: a list of floats and Nones :type array: list

Returns the average of the list without the Nones.

Return type float

simfleet.utils.chunk_path(path, speed_in_kmh)
Splits the path into smaller chunks taking into account the speed.

Parameters

• path (list) – the original path. A list of points (lon, lat)

• speed_in_kmh (float) – the speed in km per hour at which the path is being traveled.

Returns a new path equivalent (to the first one), that has at least the same number of points.

Return type list

simfleet.utils.load_class(class_path)
Tricky method that imports a class form a string.

Parameters class_path (str) – the path where the class to be imported is.

Returns the class imported and ready to be instantiated.

Return type class

simfleet.utils.request_path(agent, origin, destination, route_id)
Sends a message to the RouteAgent to request a path

Parameters

• agent – the agent who is requesting the path

• origin (list) – a list with the origin coordinates [longitude, latitude]

• destination (list) – a list with the target coordinates [longitude, latitude]

Returns

a list of points (longitude and latitude) representing the path, the distance of the path in me-
ters, a estimation of the duration of the path

Return type list, float, float

Examples

>>> path, distance, duration = request_path(agent, origin=[0,0], destination=[1,
→˓1])
>>> print(path)
[[0,0], [0,1], [1,1]]
>>> print(distance)
2.0
>>> print(duration)
3.24

simfleet.utils.status_to_str(status_code)
Translates an int status code to a string that represents the status

Parameters status_code (int) – the code of the status

Returns the string that represents the status

5.1. simfleet package 61

SimFleet Documentation, Release 1.0.1

Return type str

simfleet.utils.unused_port(hostname)
Return a port that is unused on the current host.

5.1.16 Module contents

Top-level package for SimFleet.

62 Chapter 5. API Documentation

CHAPTER 6

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

6.1 Types of Contributions

6.1.1 Report Bugs

Report bugs at https://github.com/javipalanca/simfleet/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

6.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

6.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

63

https://github.com/javipalanca/simfleet/issues

SimFleet Documentation, Release 1.0.1

6.1.4 Write Documentation

SimFleet could always use more documentation, whether as part of the official SimFleet docs, in docstrings, or even
on the web in blog posts, articles, and such.

6.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/javipalanca/simfleet/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

6.2 Get Started!

Ready to contribute? Here’s how to set up simfleet for local development.

1. Fork the simfleet repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/simfleet.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv simfleet
$ cd simfleet/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 simfleet tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

64 Chapter 6. Contributing

https://github.com/javipalanca/simfleet/issues

SimFleet Documentation, Release 1.0.1

6.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.6. Check https://travis-ci.org/javipalanca/simfleet/pull_requests and
make sure that the tests pass for all supported Python versions.

6.4 Tips

To run a subset of tests:

$ py.test tests.test_simfleet

6.3. Pull Request Guidelines 65

https://travis-ci.org/javipalanca/simfleet/pull_requests

SimFleet Documentation, Release 1.0.1

66 Chapter 6. Contributing

CHAPTER 7

Credits

7.1 Development Lead

• Javi Palanca <jpalanca@gmail.com>

7.2 Contributors

• Jaume Jordan

67

mailto:jpalanca@gmail.com

SimFleet Documentation, Release 1.0.1

68 Chapter 7. Credits

CHAPTER 8

History

8.1 1.0.1 (2019-11-07)

• SPADE and pandas version upgraded.

• Stop simulation fixed.

• Aesthetic changes.

• Minor bug fixes.

• Updated documentation.

8.2 1.0.0 (2019-11-05)

• Moved from a taxi simulator to a generic fleet simulator.

• Updated documentation.

• Added support for different cities.

• Directory agent now sends all the info.

• Fixed bug of staying the corresponding time in the station when charging.

• Changed logger to loguru library.

• Removed fuel from transport popup, now is current_autonomy/max_autonomy.

• Concurrent charging in stations now allowed through TimeoutBehavior.

• Custom icons added.

• Removed agents introduction from GUI.

• Added specific parameters in scenario file (now config file).

• CLI simplified.

69

SimFleet Documentation, Release 1.0.1

• Changed cli to config file.

• Control of free places and status for StationAgent.

• Fuel refill behavior between TransportAgent and StationAgent.

• Refactoring from passenger to Customer

• Refactoring from taxi to Transport

• Refactoring from coordinator to fleet manager

8.3 0.4.1 (2019-01-07)

• Fixed bug when checking if the simulation is finished.

8.4 0.4.0 (2018-10-25)

• Improved the concurrent creation of agents.

• Added stop and clear buttons to the interface.

• Added download button for getting results in excel and json formats.

• Documentation updated.

8.5 0.3.0 (2018-10-01)

• Migrated to SPADE 3.

• Documentation highly improved.

• Helper functions added and refined.

• Javascript framework included: VueJS

• Routes centralized with a Route agent.

• UI improved.

8.6 0.2 (2017-11-15)

• Added scenario loading feature.

8.7 0.1.3 (2017-11-15)

• Fixed minor bugs.

8.8 0.1.1 (2017-11-14)

• Added documentation.

70 Chapter 8. History

SimFleet Documentation, Release 1.0.1

8.9 0.1.0 (2017-11-03)

• First release on PyPI.

8.9. 0.1.0 (2017-11-03) 71

SimFleet Documentation, Release 1.0.1

72 Chapter 8. History

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

73

SimFleet Documentation, Release 1.0.1

74 Chapter 9. Indices and tables

Bibliography

[GangOfFour95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of Reusable Object
Oriented Software. Addison-Wesley, 1995.

75

SimFleet Documentation, Release 1.0.1

76 Bibliography

Python Module Index

s
simfleet, 62
simfleet.cli, 39
simfleet.config, 39
simfleet.customer, 40
simfleet.directory, 42
simfleet.fleetmanager, 43
simfleet.helpers, 45
simfleet.protocol, 45
simfleet.route, 46
simfleet.simulator, 46
simfleet.station, 53
simfleet.strategies, 55
simfleet.strategies_fsm, 55
simfleet.transport, 56
simfleet.utils, 60

77

SimFleet Documentation, Release 1.0.1

78 Python Module Index

Index

A
accept_registration() (sim-

fleet.fleetmanager.TransportRegistrationForFleetBehaviour
method), 44

accept_transport() (sim-
fleet.customer.CustomerStrategyBehaviour
method), 41

accept_transport() (sim-
fleet.station.StationStrategyBehaviour method),
54

AcceptAlwaysStrategyBehaviour (class in sim-
fleet.strategies), 55

AcceptFirstRequestBehaviour (class in sim-
fleet.strategies), 55

add_customer() (simfleet.simulator.SimulatorAgent
method), 47

add_manager() (simfleet.simulator.SimulatorAgent
method), 47

add_service() (sim-
fleet.directory.RegistrationBehaviour method),
43

add_station() (simfleet.simulator.SimulatorAgent
method), 47

add_transport() (sim-
fleet.fleetmanager.TransportRegistrationForFleetBehaviour
method), 44

add_transport() (sim-
fleet.simulator.SimulatorAgent method),
47

all_customers_in_destination() (sim-
fleet.simulator.SimulatorAgent method), 47

AlreadyInDestination, 45
are_close() (in module simfleet.helpers), 45
arrived_to_destination() (sim-

fleet.transport.TransportAgent method),
56

arrived_to_station() (sim-
fleet.transport.TransportAgent method),
56

assigning_fleet_icon() (sim-
fleet.simulator.SimulatorAgent method),
47

assigning_place() (simfleet.station.StationAgent
method), 53

async_start_agent() (sim-
fleet.simulator.SimulatorAgent method),
47

avg() (in module simfleet.utils), 60

C
calculate_km_expense() (sim-

fleet.transport.TransportAgent method),
56

cancel_customer() (sim-
fleet.transport.TransportAgent method),
57

cancel_proposal() (sim-
fleet.transport.TransportStrategyBehaviour
method), 59

ChargeBehaviour (class in simfleet.station), 53
charging_complete() (sim-

fleet.station.ChargeBehaviour method), 53
charging_transport() (sim-

fleet.station.StationAgent method), 53
chunk_path() (in module simfleet.utils), 61
clean_controller() (sim-

fleet.simulator.SimulatorAgent method),
47

clear_agents() (sim-
fleet.fleetmanager.FleetManagerAgent
method), 43

clear_agents() (simfleet.simulator.SimulatorAgent
method), 47

clear_stopped_agents() (sim-
fleet.simulator.SimulatorAgent method),
47

collect_stats() (sim-
fleet.simulator.SimulatorAgent method),
47

79

SimFleet Documentation, Release 1.0.1

create_customer_agent() (sim-
fleet.simulator.SimulatorAgent method),
47

create_directory_agent() (sim-
fleet.simulator.SimulatorAgent method),
48

create_fleetmanager_agent() (sim-
fleet.simulator.SimulatorAgent method),
48

create_station_agent() (sim-
fleet.simulator.SimulatorAgent method),
48

create_transport_agent() (sim-
fleet.simulator.SimulatorAgent method),
48

customer_agents (sim-
fleet.simulator.SimulatorAgent attribute),
48

CustomerAgent (class in simfleet.customer), 40
CustomerStrategyBehaviour (class in sim-

fleet.customer), 41

D
deassigning_place() (sim-

fleet.station.StationAgent method), 53
DelegateRequestBehaviour (class in sim-

fleet.strategies), 55
DirectoryAgent (class in simfleet.directory), 42
DirectoryStrategyBehaviour (class in sim-

fleet.directory), 42
distance_in_meters() (in module sim-

fleet.helpers), 45
download_stats_excel_controller() (sim-

fleet.simulator.SimulatorAgent method), 48
download_stats_json_controller() (sim-

fleet.simulator.SimulatorAgent method), 48
drop_customer() (sim-

fleet.transport.TransportAgent method),
57

drop_station() (simfleet.transport.TransportAgent
method), 57

E
entities_controller() (sim-

fleet.simulator.SimulatorAgent method),
48

F
FleetManagerAgent (class in sim-

fleet.fleetmanager), 43
FleetManagerStrategyBehaviour (class in sim-

fleet.fleetmanager), 44
FSMTransportStrategyBehaviour (class in sim-

fleet.strategies_fsm), 55

G
generate_tree() (sim-

fleet.simulator.SimulatorAgent method),
49

get_autonomy() (simfleet.transport.TransportAgent
method), 57

get_available_places() (sim-
fleet.station.StationAgent method), 53

get_customer_stats() (sim-
fleet.simulator.SimulatorAgent method),
50

get_directory() (sim-
fleet.simulator.SimulatorAgent method),
50

get_manager_stats() (sim-
fleet.simulator.SimulatorAgent method),
50

get_pickup_time() (sim-
fleet.customer.CustomerAgent method), 40

get_position() (simfleet.customer.CustomerAgent
method), 40

get_position() (simfleet.station.StationAgent
method), 53

get_position() (simfleet.transport.TransportAgent
method), 57

get_power() (simfleet.station.StationAgent method),
53

get_route() (simfleet.route.RouteAgent method), 46
get_simulation_time() (sim-

fleet.simulator.SimulatorAgent method),
50

get_station_stats() (sim-
fleet.simulator.SimulatorAgent method),
50

get_stats() (simfleet.simulator.SimulatorAgent
method), 50

get_stats_dataframes() (sim-
fleet.simulator.SimulatorAgent method),
50

get_status() (simfleet.station.StationAgent method),
53

get_transport_agents() (sim-
fleet.fleetmanager.FleetManagerStrategyBehaviour
method), 44

get_transport_stats() (sim-
fleet.simulator.SimulatorAgent method),
50

get_waiting_time() (sim-
fleet.customer.CustomerAgent method), 40

go_to_the_station() (sim-
fleet.transport.TransportStrategyBehaviour
method), 60

80 Index

SimFleet Documentation, Release 1.0.1

H
has_enough_autonomy() (sim-

fleet.transport.TransportStrategyBehaviour
method), 60

hide_passwords() (in module simfleet.config), 39

I
index_controller() (sim-

fleet.simulator.SimulatorAgent method),
51

inform_customer() (sim-
fleet.transport.TransportAgent method),
57

inform_station() (sim-
fleet.transport.TransportAgent method),
57

init_controller() (sim-
fleet.simulator.SimulatorAgent method),
51

is_customer_in_transport() (sim-
fleet.transport.TransportAgent method),
57

is_free() (simfleet.transport.TransportAgent
method), 57

is_in_destination() (sim-
fleet.customer.CustomerAgent method), 40

is_in_destination() (sim-
fleet.transport.TransportAgent method),
57

is_simulation_finished() (sim-
fleet.simulator.SimulatorAgent method),
51

K
kmh_to_ms() (in module simfleet.helpers), 45

L
load_cache() (simfleet.route.RouteAgent method), 46
load_class() (in module simfleet.utils), 61
load_config() (simfleet.config.SimfleetConfig

method), 39
load_icons() (simfleet.simulator.SimulatorAgent

method), 51
load_scenario() (sim-

fleet.simulator.SimulatorAgent method),
51

M
manager_agents (simfleet.simulator.SimulatorAgent

attribute), 51
move_to() (simfleet.transport.TransportAgent

method), 57

N
needs_charging() (sim-

fleet.transport.TransportAgent method),
57

num_customers (simfleet.config.SimfleetConfig
attribute), 39

num_managers (simfleet.config.SimfleetConfig at-
tribute), 39

num_stations (simfleet.config.SimfleetConfig at-
tribute), 39

num_transport (simfleet.config.SimfleetConfig
attribute), 39

O
on_end() (simfleet.route.RouteAgent.RequestRouteBehaviour

method), 46
on_start() (simfleet.customer.CustomerStrategyBehaviour

method), 41
on_start() (simfleet.customer.TravelBehaviour

method), 42
on_start() (simfleet.directory.DirectoryStrategyBehaviour

method), 42
on_start() (simfleet.directory.RegistrationBehaviour

method), 43
on_start() (simfleet.fleetmanager.FleetManagerStrategyBehaviour

method), 44
on_start() (simfleet.fleetmanager.TransportRegistrationForFleetBehaviour

method), 44
on_start() (simfleet.route.RouteAgent.RequestRouteBehaviour

method), 46
on_start() (simfleet.station.RegistrationBehaviour

method), 53
on_start() (simfleet.station.StationStrategyBehaviour

method), 54
on_start() (simfleet.station.TravelBehaviour

method), 55
on_start() (simfleet.strategies_fsm.TransportMovingState

method), 55
on_start() (simfleet.strategies_fsm.TransportWaitingForApprovalState

method), 56
on_start() (simfleet.strategies_fsm.TransportWaitingState

method), 56
on_start() (simfleet.transport.RegistrationBehaviour

method), 56
on_start() (simfleet.transport.TransportStrategyBehaviour

method), 60

P
passenger_in_transport_callback() (in

module simfleet.strategies_fsm), 56
PathRequestException, 45
persist_cache() (simfleet.route.RouteAgent

method), 46

Index 81

SimFleet Documentation, Release 1.0.1

pick_up_customer() (sim-
fleet.transport.TransportStrategyBehaviour
method), 60

print_stats() (simfleet.simulator.SimulatorAgent
method), 51

R
random_position() (in module simfleet.helpers), 45
refuse_transport() (sim-

fleet.customer.CustomerStrategyBehaviour
method), 42

refuse_transport() (sim-
fleet.station.StationStrategyBehaviour method),
55

RegistrationBehaviour (class in sim-
fleet.directory), 43

RegistrationBehaviour (class in simfleet.station),
53

RegistrationBehaviour (class in sim-
fleet.transport), 56

reject_registration() (sim-
fleet.fleetmanager.TransportRegistrationForFleetBehaviour
method), 44

remove_service() (sim-
fleet.directory.RegistrationBehaviour method),
43

remove_transport() (sim-
fleet.fleetmanager.TransportRegistrationForFleetBehaviour
method), 44

request_path() (in module simfleet.utils), 61
request_path() (simfleet.customer.CustomerAgent

method), 40
request_path() (simfleet.simulator.SimulatorAgent

method), 51
request_path() (simfleet.transport.TransportAgent

method), 57
request_route_to_server() (sim-

fleet.route.RouteAgent static method), 46
RequestRouteBehaviour (class in simfleet.utils),

60
RouteAgent (class in simfleet.route), 46
RouteAgent.RequestRouteBehaviour (class in

simfleet.route), 46
run() (simfleet.customer.CustomerStrategyBehaviour

method), 42
run() (simfleet.customer.TravelBehaviour method), 42
run() (simfleet.directory.DirectoryStrategyBehaviour

method), 42
run() (simfleet.directory.RegistrationBehaviour

method), 43
run() (simfleet.fleetmanager.FleetManagerStrategyBehaviour

method), 44
run() (simfleet.fleetmanager.TransportRegistrationForFleetBehaviour

method), 44

run() (simfleet.route.RouteAgent.RequestRouteBehaviour
method), 46

run() (simfleet.simulator.SimulatorAgent method), 51
run() (simfleet.station.ChargeBehaviour method), 53
run() (simfleet.station.RegistrationBehaviour method),

53
run() (simfleet.station.StationStrategyBehaviour

method), 55
run() (simfleet.station.TravelBehaviour method), 55
run() (simfleet.strategies.AcceptAlwaysStrategyBehaviour

method), 55
run() (simfleet.strategies.AcceptFirstRequestBehaviour

method), 55
run() (simfleet.strategies.DelegateRequestBehaviour

method), 55
run() (simfleet.strategies_fsm.TransportMovingState

method), 56
run() (simfleet.strategies_fsm.TransportWaitingForApprovalState

method), 56
run() (simfleet.strategies_fsm.TransportWaitingState

method), 56
run() (simfleet.transport.RegistrationBehaviour

method), 56
run() (simfleet.transport.TransportAgent.MovingBehaviour

method), 56
run() (simfleet.transport.TransportStrategyBehaviour

method), 60
run() (simfleet.utils.RequestRouteBehaviour method),

60
run_controller() (sim-

fleet.simulator.SimulatorAgent method),
51

run_strategy() (simfleet.customer.CustomerAgent
method), 40

run_strategy() (simfleet.directory.DirectoryAgent
method), 42

run_strategy() (sim-
fleet.fleetmanager.FleetManagerAgent
method), 43

run_strategy() (simfleet.station.StationAgent
method), 53

run_strategy() (simfleet.transport.TransportAgent
method), 58

S
send() (simfleet.transport.TransportAgent method), 58
send_confirmation() (sim-

fleet.directory.RegistrationBehaviour method),
43

send_confirmation_travel() (sim-
fleet.transport.TransportStrategyBehaviour
method), 60

send_get_managers() (sim-
fleet.customer.CustomerStrategyBehaviour

82 Index

SimFleet Documentation, Release 1.0.1

method), 42
send_get_stations() (sim-

fleet.transport.TransportStrategyBehaviour
method), 60

send_negative() (sim-
fleet.directory.DirectoryStrategyBehaviour
method), 43

send_proposal() (sim-
fleet.transport.TransportStrategyBehaviour
method), 60

send_registration() (sim-
fleet.fleetmanager.FleetManagerStrategyBehaviour
method), 44

send_registration() (sim-
fleet.station.RegistrationBehaviour method),
53

send_registration() (sim-
fleet.transport.RegistrationBehaviour method),
56

send_request() (sim-
fleet.customer.CustomerStrategyBehaviour
method), 42

send_services() (sim-
fleet.directory.DirectoryStrategyBehaviour
method), 43

set_autonomy() (simfleet.transport.TransportAgent
method), 58

set_available_places() (sim-
fleet.station.StationAgent method), 53

set_default_strategies() (sim-
fleet.simulator.SimulatorAgent method),
51

set_directory() (simfleet.customer.CustomerAgent
method), 40

set_directory() (sim-
fleet.fleetmanager.FleetManagerAgent
method), 43

set_directory() (sim-
fleet.simulator.SimulatorAgent method),
52

set_directory() (simfleet.station.StationAgent
method), 54

set_directory() (sim-
fleet.transport.TransportAgent method),
58

set_fleet_type() (sim-
fleet.customer.CustomerAgent method), 40

set_fleet_type() (sim-
fleet.fleetmanager.FleetManagerAgent
method), 43

set_fleet_type() (sim-
fleet.transport.TransportAgent method),
58

set_fleetmanager() (sim-

fleet.customer.CustomerAgent method), 40
set_fleetmanager() (sim-

fleet.transport.TransportAgent method),
58

set_icon() (simfleet.customer.CustomerAgent
method), 40

set_icon() (simfleet.fleetmanager.FleetManagerAgent
method), 43

set_icon() (simfleet.simulator.SimulatorAgent
method), 52

set_icon() (simfleet.station.StationAgent method), 54
set_icon() (simfleet.transport.TransportAgent

method), 58
set_id() (simfleet.customer.CustomerAgent method),

40
set_id() (simfleet.directory.DirectoryAgent method),

42
set_id() (simfleet.fleetmanager.FleetManagerAgent

method), 43
set_id() (simfleet.station.StationAgent method), 54
set_id() (simfleet.transport.TransportAgent method),

58
set_initial_position() (sim-

fleet.transport.TransportAgent method),
58

set_km_expense() (sim-
fleet.transport.TransportAgent method),
58

set_position() (simfleet.customer.CustomerAgent
method), 40

set_position() (simfleet.station.StationAgent
method), 54

set_position() (simfleet.transport.TransportAgent
method), 58

set_power() (simfleet.station.StationAgent method),
54

set_registration() (sim-
fleet.fleetmanager.FleetManagerAgent
method), 44

set_registration() (sim-
fleet.station.RegistrationBehaviour method),
53

set_registration() (simfleet.station.StationAgent
method), 54

set_registration() (sim-
fleet.transport.TransportAgent method),
58

set_route_agent() (sim-
fleet.customer.CustomerAgent method), 41

set_route_agent() (sim-
fleet.transport.TransportAgent method),
58

set_speed() (simfleet.transport.TransportAgent
method), 58

Index 83

SimFleet Documentation, Release 1.0.1

set_status() (simfleet.station.StationAgent method),
54

set_target_position() (sim-
fleet.customer.CustomerAgent method), 41

set_type() (simfleet.station.StationAgent method), 54
setup() (simfleet.customer.CustomerAgent method),

41
setup() (simfleet.directory.DirectoryAgent method), 42
setup() (simfleet.fleetmanager.FleetManagerAgent

method), 44
setup() (simfleet.route.RouteAgent method), 46
setup() (simfleet.simulator.SimulatorAgent method),

52
setup() (simfleet.station.StationAgent method), 54
setup() (simfleet.strategies_fsm.FSMTransportStrategyBehaviour

method), 55
setup() (simfleet.transport.TransportAgent method),

58
simfleet (module), 62
simfleet.cli (module), 39
simfleet.config (module), 39
simfleet.customer (module), 40
simfleet.directory (module), 42
simfleet.fleetmanager (module), 43
simfleet.helpers (module), 45
simfleet.protocol (module), 45
simfleet.route (module), 46
simfleet.simulator (module), 46
simfleet.station (module), 53
simfleet.strategies (module), 55
simfleet.strategies_fsm (module), 55
simfleet.transport (module), 56
simfleet.utils (module), 60
SimfleetConfig (class in simfleet.config), 39
SimulatorAgent (class in simfleet.simulator), 46
station_agents (simfleet.simulator.SimulatorAgent

attribute), 52
StationAgent (class in simfleet.station), 53
StationStrategyBehaviour (class in sim-

fleet.station), 54
status_to_str() (in module simfleet.utils), 61
step() (simfleet.transport.TransportAgent method), 59
stop() (simfleet.simulator.SimulatorAgent method), 52
stop_agents() (simfleet.simulator.SimulatorAgent

method), 52
stop_agents_controller() (sim-

fleet.simulator.SimulatorAgent method),
52

StrategyBehaviour (class in simfleet.utils), 60

T
time_is_out() (simfleet.simulator.SimulatorAgent

method), 52

to_json() (simfleet.customer.CustomerAgent
method), 41

to_json() (simfleet.station.StationAgent method), 54
to_json() (simfleet.transport.TransportAgent

method), 59
total_time() (simfleet.customer.CustomerAgent

method), 41
transport_agents (sim-

fleet.simulator.SimulatorAgent attribute),
52

transport_charged() (sim-
fleet.transport.TransportAgent method),
59

TransportAgent (class in simfleet.transport), 56
TransportAgent.MovingBehaviour (class in

simfleet.transport), 56
TransportMovingState (class in sim-

fleet.strategies_fsm), 55
TransportRegistrationForFleetBehaviour

(class in simfleet.fleetmanager), 44
TransportStrategyBehaviour (class in sim-

fleet.transport), 59
TransportWaitingForApprovalState (class in

simfleet.strategies_fsm), 56
TransportWaitingState (class in sim-

fleet.strategies_fsm), 56
TravelBehaviour (class in simfleet.customer), 42
TravelBehaviour (class in simfleet.station), 55

U
unused_port() (in module simfleet.utils), 62

W
watch_value() (simfleet.transport.TransportAgent

method), 59
write_excel() (simfleet.simulator.SimulatorAgent

method), 52
write_file() (simfleet.simulator.SimulatorAgent

method), 52
write_json() (simfleet.simulator.SimulatorAgent

method), 53

84 Index

	SimFleet
	Features
	Credits

	Installation
	Stable release
	From sources

	Quickstart
	Usage
	SimFleet entities summary
	Command-line interface
	The Config file: Loading Scenarios
	Graphical User Interface

	Developing New Strategies
	Introduction
	Agent Foundations
	How to Implement your own Strategies
	How to Implement New Strategies – Recommendations

	API Documentation
	simfleet package

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

	Credits
	Development Lead
	Contributors

	History
	1.0.1 (2019-11-07)
	1.0.0 (2019-11-05)
	0.4.1 (2019-01-07)
	0.4.0 (2018-10-25)
	0.3.0 (2018-10-01)
	0.2 (2017-11-15)
	0.1.3 (2017-11-15)
	0.1.1 (2017-11-14)
	0.1.0 (2017-11-03)

	Indices and tables
	Bibliography
	Python Module Index
	Index

